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Abstract: 

Parametric identification approaches play a crucial role in the control and monitoring of industrial systems. 

They facilitate the identification of system variables and enable the prediction of their evolution based on the 

input-output relationship. In this study, we employ the ARMAX approach to accurately predict the dynamic 

vibratory behavior of MS5002B gas turbine bearings. By utilizing real input-output data obtained from their 

operation, this approach effectively captures the vibration characteristics of the bearings. Additionally, the 

ARMAX technique serves as a valuable diagnostic tool for the bearings, enhancing the quality of identification 

of turbine variables. This enables continuous monitoring of the bearings and real-time prediction of their 

behavior. Furthermore, the ARMAX approach facilitates the detection of all potential vibration patterns that 

may occur in the bearings, with monitoring thresholds established by the methodology. Consequently, this 

enhances the availability of the bearings and reduces turbine downtime. The efficacy of the proposed ARMAX 

approach is demonstrated through comprehensive results obtained in this study. Robustness tests are conducted, 

comparing the real behavior observed through various probes with the reference model, thereby validating the 

approach. 
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Nomenclature and abbreviations 

 

AIC  Akaike's information criterion  

ANFIS  Adaptive Neuro-Fuzzy Inference Systems 

ANN Artificial Neural Network 

ARMA  Autoregressive Moving Average 

ARMAX Auto Regressive Moving Average with 

eXogenous input 

ARX  Autoregressive with Extra Input 

FL Fuzzy logic 

FPE Final prediction error 

HP High-pressure turbine 

LP Low-pressure turbine 

MIMO Multiple Input, Multiple Output 

MSE Mean Square Error 

NRMSE  Normalized Root Mean Square Error      

OE  Output Error  

SISO Single Input, Single Output 

𝐴(𝑞)  System state vector 

𝐵(𝑞)  Command vector  

𝐶(𝑞) Observation vector 
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 𝑎𝑖, 𝑏𝑖, 𝑐𝑖Polynomial weighting coefficients 

𝐺(𝑞) Transfer function 

𝑔 Natural number 

𝐻(𝑞)  Dynamic disturbance function 

𝑘  Discrete time 

𝑁  Number of samples taken is the  

𝑛𝑎  Degrees of the polynomial 𝐴(𝑞) 
𝑛𝑏  Degrees of the polynomial 𝐵(𝑞) 
𝑛𝑐  Degrees of the polynomial 𝐶(𝑞) 
𝑛𝑘 Dead time in the process 

𝑞  State operator  

𝑆  Number of estimated parameters 

𝑢(𝑘) Input signal 

𝑢1 HP rotor speed Input 

𝑢2 LP rotor speed Input 

𝑉𝑁(𝜃) Criterion function 

�̇�(𝜃)      Gradient of  𝑉𝑁(𝜃) 

�̈�(𝜃)    Hessian of  𝑉𝑁(𝜃) 

𝑦(𝑘) Output signal 

𝑦1   Vibration model on bearing #1 of HP rotor  

𝑦2 Vibration model on bearing #3 of LP rotor 
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𝜃 Estimator 

𝑒(𝑘) White noise perturbation with zero mean 

�̂�(𝑘) Output predictor of 𝑦(𝑘) 
𝜎(𝑘) Variance 

𝜀(𝑘)  Error of prediction  

𝜈(𝑘)  Stochastic disturbance signal 

𝜆   Sample time 

 

1. INTRODUCTION 

 

Monitoring and identifying vibration behavior 

present significant challenges in modern 

installations utilizing gas turbines. The ability to 

establish protective measures and alarm levels for 

these devices is crucial in preventing failures. 

Consequently, companies relying on such systems 

face the major challenge of maintaining desired 

performance levels while ensuring proper control of 

these rotating machines. 

In this context, this study proposes the 

development of a dedicated vibration model for the 

bearings of an MS5002B gas turbine, utilizing the 

ARMAX structure guided by operational data. This 

approach serves as an effective solution for real-time 

monitoring of the vibratory dynamics of the turbine, 

aimed at ensuring optimal operation and minimizing 

turbine downtime. 

Vibration monitoring is imperative for most 

installations with rotating equipment to minimize 

preventive maintenance and extend equipment 

lifespan. Recent works have focused on diagnostic 

approaches for rotating machines, integrating 

vibration analysis based on input-output data. For 

example, the work of Benrabeh Djaidir et al. [4] 

proposed an approach for detecting the vibration 

faults of a turbine through the behavior analysis of 

the input/output operating data of the rotating 

machine. This enables the improvement of vibration 

diagnosis strategy with better detection precision in 

real-time applications. Madhavan S. et al. [11] 

provided guidance on the detection of failures 

caused by turbine shaft blade vibration to maximize 

the energy delivered by the machine while reducing 

vibration problems. Saeed R.A. et al. [24] integrated 

the concept of artificial intelligence for the diagnosis 

of turbine faults using ANN artificial neural network 

models and ANFIS adaptive neuro-fuzzy inference 

systems, ensuring intelligent vibration analysis and 

improved efficiency in detecting failure occurrences 

due to vibration. Abdelhafid Benyounes et al. [1] 

proposed a comparative study of modeling and 

control of a gas turbine, exploring fuzzy techniques, 

neural networks, and the ANFIS structure. Sanjay 

Barad et al. [25] developed an intelligent 

configuration for monitoring the mechanical state of 

a gas turbine, based on the use of neural networks, 

leading to improved monitoring performance and 

precision. Sidali Aissat et al. [28] identified the 

operating parameters of a gas turbine using a fuzzy 

multi-model approach and exploited operating data 

for the prediction of the operating state dynamics of 

the machine. 

However, Sadough Vanini Z.N. et al. [23] 

applied artificial intelligence techniques to diagnose 

faults in a double-body turbine, specifically utilizing 

artificial neural networks for fault detection and 

isolation. Merouane Alaoui et al. [13] proposed a 

method for analyzing the stability and vibration 

bifurcation of a gas turbine based on operating data, 

allowing for the prediction of vibration indices and 

highlighting their stability at the bifurcation points in 

high-speed operating regimes. Shoyama Tadayoshi 

[26] conducted a detailed analysis of bearing 

vibration phenomena, studying nonlinear 

bifurcations and ensuring overall stability. Sidali 

Aissat et al. [27] employed a multi-model approach 

for the identification of turbine variables, using 

decoupled states to detect defects through residue 

generation based on parity space. Merouane Alaoui 

et al. [14] proposed a turbine monitoring strategy 

using a generalized predictive adaptive control 

structure for turbine speed monitoring, which 

demonstrated a good response time and efficiency in 

regulating turbine parameters. 

Numerous other studies have focused on 

controlling, modeling, diagnosing, monitoring, and 

evaluating the vibration behavior of rotating 

machinery. This work contributes to the 

understanding and control of vibration-related 

problems, such as the developments made by Yasser 

Chiker et al. [30], who studied the dispersibility of 

nanofillers on vibrational dynamics and their 

influences on composite materials. Combescure D. 

and Lazarus A. [6] employed finite element 

techniques to model a rotating machine and analyze 

its vibration behavior, predicting the influence of 

vibrations on turbine operation and improving 

efficiency. Mohamed Benrahmoune et al. [15] 

proposed strategies for estimating fault monitoring 

and fault identification factors for gas turbines using 

smart tools like deep learning, fuzzy logic, neuro-

inference, and artificial neural networks. They also 

performed dynamic learning of a neural network for 

gas turbine monitoring, employing a neural 

architecture based on external exogenous input [17]. 

Identification methods are frequently used to 

determine the characteristics of complex dynamic 

models representing various physical phenomena. 

Recently, artificial intelligence has been applied in 

fault diagnosis, discussing recent advances in model-

based fault diagnosis for dynamic system behavior. 

Mateo Daniel Roig Greidanus and Marcelo Lobo 

Heldwein [12] developed a fault-tolerant control 

strategy for gas turbines to improve their online 

monitoring. Choayb Djeddi et al. [5] implemented a 

robust approach for detecting faults affecting a 

turbine using a fuzzy neuro-inference configuration, 

ensuring high protection of the machine. Nadji 

Hadroug et al. [22] implemented an advanced 

turbine fault detection framework based on the fuzzy 

concept for the identification of symptom-fault 

correlations. Muhammad Mujtaba Syed et al. [19] 

devised an advanced approach for diagnosing gas 

pipeline faults, especially for transient behaviors. 
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Mohsen Shabanian and Mohsen Montazeri [18] 

developed a fault diagnosis algorithm with a neuro-

fuzzy structure applied to a complex nonlinear 

system. Weipeng Sun et al. [29] proposed model 

estimation and nonlinear characterization 

approaches for gas turbines and rotor bearing 

systems. 

Several researchers have also developed 

applications on turbine reliability. Nadji Hadroug et 

al. [21] studied the modeling of reliability and 

availability indices of a gas turbine using an adaptive 

neuro-fuzzy inference representation. Ahmed Zohair 

Djeddi et al. [2] estimated the reliability of a gas 

turbine by minimizing the risk of failures and 

conducted a comparative study between usual 

reliability distributions. Ahmed Zohair Djeddi et al. 

[3] improved the availability and maintainability of 

a gas turbine using long-term memory networks 

based on deep learning and exploiting failure data. 

This article presents a parametric identification 

technique that monitors the vibration behaviors of 

MS5002B gas turbine bearings using the ARMAX 

approach and real-time operational data. The goal is 

to predict vibrations in the high-pressure and low-

pressure turbine rotor bearings through optimal 

multi-input-multi-output estimation. To evaluate the 

developed model's quality, performance tests using 

criteria such as RMSE, FPE, and MSE are proposed. 

Residual analysis, including residual autocorrelation 

and cross-correlation tests, is also performed. The 

implementation of the ARMAX approach involves 

acquiring and filtering turbine operating data, 

followed by the identification process to develop 

vibration behavior models for the examined turbine 

bearings. The tests and validation results 

demonstrate satisfactory performance, illustrating 

the efficiency of estimating and detecting the studied 

turbine's vibratory behavior. 

 

2. GAS TURBINE SYSTEM  

 

The performance of gas turbines depends on the 

operating conditions, such as climate and load. To 

ensure proper operation and increase their lifespan, 

it is important to understand the effects of these 

conditions on the gas turbines. In this paper, we 

propose to use an ARMAX model to identify and 

predict the vibration behaviors of the MS5002B gas 

turbine bearings in discrete time. This gas turbine is 

installed in the Hassi R’Mel gas center in southern 

Algeria. It is a two-shaft internal combustion turbine 

that consists of a gas generator and a power turbine. 

The gas generator includes an air compressor, a 

combustor and a high-pressure (HP) turbine that 

drives the air compressor. The power turbine 

includes a low-pressure (LP) turbine that drives a 

centrifugal compressor to produce the useful power. 

The two shafts are not linked, so they can operate at 

different speeds to adapt to the load variations 

required by the centrifugal compressor. Figure 1 

shows the MS5002B gas turbine system and Table 1 

summarizes its characteristics.  

 

Fig. 1. MS5002B Gas turbine 

 
Table 1. MS5002B turbine specifications 

Design parameters (ISO conditions) 

Cycle Simple 

Pressure Ratio 6 – 8 

Exhaust Temperature 517.2 °C 

Exhaust Flow 124.3 Kg/s 

Number of turbine 

stages 
02  

Rated power 28336.6 Kw 

Heat Rate 12468.3 Kj/Kwh 

Turbine efficiency 28.8 % 

shaft speed 
5100 rpm HP and 4903 rpm 

LP 

 

The MS5002B gas turbine under study consists 

of two shaft lines, each equipped with a separate 

power turbine known as a free turbine. These two 

rotors operate independently, allowing them to 

function at different speeds to accommodate the 

required load variations for the centrifugal 

compressor. The first rotor encompasses the axial 

compressor and the high-pressure (HP) turbine, as 

illustrated in Figure 2. This rotor compresses the air 

and delivers it to the pressurized combustion 

chambers. The second rotor, the low-pressure (LP) 

turbine, as depicted in Figure 3, is responsible for 

driving the centrifugal compressor as a load. The LP 

turbine shaft is supported by two bearings, namely 

bearings #3 and #4, forming the low-pressure turbine 

shaft. 

 

Fig. 2. HP high pressure turbine shaft 
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Fig. 3. LP Low Pressure Turbine Shaft 

 

The vibration and rotation speed data of the 

turbine rotor are collected by various sensors 

installed on the turbine. These sensors produce 

analog signals that are converted into digital signals 

by an analog-digital converter. The vibration signals 

are measured at bearings #1 and #3 using 

velocimeters, as shown in Figure 4. The rotation 

speed signals are measured using magnetic speed 

sensors, as shown in Figure 5. 

 

 

Fig. 4. Position of the vibration velocimeter 

sensor 

 

 

Fig. 5. Position of the magnetic speed sensor 

 

Practically, the vibration alarm levels of the 

studied MS5002B turbine are presented in Table 2, 

serving as critical measurements for the ongoing 

monitoring of this rotating machine. These indices 

play a crucial role in the analysis of vibration signals, 

offering one of the most effective methods for 

preventing breakdowns and failures of gas turbines. 

Regular measurements of vibration levels are carried 

out periodically for the MS5002B turbine, as an 

increase in vibration level signifies a significant 

deterioration factor. 

However, it should be noted that these vibration 

level measurements may not always provide precise 

information about the exact location of turbine 

faults. Instead, they are useful in determining the 

levels at which the highest vibration amplitudes 

occur. Nevertheless, by obtaining a robust 

parametric representation of the vibration model 

through reliable data acquisition, it becomes possible 

to identify the sources responsible for turbine 

vibrations accurately. 

 
Table 2. MS5002B Turbine Vibration Alarm Levels 

Vibration Alarm level Danger level 

Bearing #1 (BB1) 12.7 mm/s 25.4 mm/s 

Bearing #3 (BB4) 12.7 mm/s 25.4 mm/s 

 

The vibrations of the MS5002B turbine result 

from various phenomena and faults, including 

external forces such as friction, unbalance, 

misalignment, bearing failure, gear teeth, and other 

sources that generate vibrations. These vibrations 

pose significant operating risks to the turbine rotor, 

which are then transmitted to the bearings. To detect 

and analyze vibration anomalies associated with the 

MS5002B turbine bearings, we present their types in 

Table 3, which cover a wide operating range. In the 

next section, we propose a state equation model 

based on the ARMAX model. This model enables us 

to monitor the vibrations of these bearings and track 

changes in vibration levels affecting bearing #1 and 

bearing #3 of the turbine. By doing so, we can assess 

the turbine's condition and identify any faults.  

 
Table 3. Type of MS5002B turbine bearings 

Bearing 

N° 
Kind Type 

#1 

Journal Elliptical 

Thrust (active) Tilting pad (six pads ) 

Thrust (inactive 

) 
Tapered land 

#2 Journal Elliptical 

#3 Journal 
Tilting-pad (five 

pads) 

#4 

Journal Tilting-pad (five pads 

Thrust 
Tilting-pad (eight 

pads 

Thrust 
Tilting-pad (four 

pads 

 

The following part presents an estimation study 

of the state model parameters based on the ARMAX 

approach, with a view to its application for the 

development of the MS5002B turbine bearing 
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vibration model. These estimates from ARMAX 

models with the input/output variables of turbine 

operation are very similar to the profiles of the 

vibration data affecting this rotating machine. 

 

3. ARMAX MODEL  

 

The identification and modeling of the dynamics 

of complex industrial systems play a crucial role in 

their management. These models are derived from 

the relationships between various physical quantities 

that describe the system's behavior and interactions 

among different variables. Parametric identification 

approaches offer significant value as they aim to 

estimate the parameters of mathematical models 

using the system's operational data. In this study, we 

focus on the identification of vibration behavior in a 

turbine by employing the ARMAX model. The goal 

is to develop a reliable approximation of the rotor 

bearing behavior in a gas turbine, where the model 

parameters are adjusted based on the operational 

data of the rotating machine. Within this context, this 

section presents the identification of model variables 

using the ARMAX approach, which will later be 

utilized for predicting the behavior of the examined 

turbine rotor bearings. 

Indeed, the AutoRegressive model with Adjusted 

Mean and eXogenous variables denoted ARMAX is 

an input-output model of a system, is often given in 

a more compact form in discrete time as follows: 

𝑦(𝑘) = 𝐺(𝑞)𝑢(𝑘) + 𝐻(𝑞)𝑒(𝑘)                        (1) 

where 𝑦(𝑘) are the system outputs, 𝑢(𝑘) are the 

inputs and 𝑒(𝑘) are the noises.  

In this study, the identification of the parameters 

of a turbine model is proposed using the ARMAX 

structure of a discrete dynamical system given by a 

transfer function [1, 7, 8-9, 20], of the following 

general form: 

𝐺(𝑞) =
𝐵(𝑞)

𝐴(𝑞)
                                    (2) 

With:  

{
𝐴(𝑞) = 1 + 𝑎1 ⋅ 𝑞

−1+. . . +𝑎𝑛𝑎 ⋅ 𝑞
−𝑛𝑎

𝐵(𝑞) = 𝑏1 + 𝑏2 ⋅ 𝑞
−1+. . . +𝑏𝑛𝑏 ⋅ 𝑞

−𝑛𝑏+1
             

(3) 

This ARMAX model comprising noises in the 

input and on the output of the system, these 

disturbances are represented by the stochastic signal 

𝜈(𝑘), itself being generated with a dynamic 𝐻(𝑞), 
also by the stochastic signal 𝑒(𝑘) of white noise 

type. With a normal distribution variance at zero 

mean 𝜎2, as shown in Figure 6, which illustrates the 

block diagram of the ARMAX model. Hence, this 

form of ARMAX model has a dynamic for the noise 

signal and the input of the system, which can be 

written in the following form:  

𝐻(𝑞) =
𝑉(𝑞)

𝐸(𝑞)
=

1 + 𝑐1𝑞
−1+. . . +𝑐𝑛𝑐𝑞

−𝑛𝑐

1 + 𝑎1𝑞
−1+. . . +𝑎𝑛𝑎𝑞

−𝑛𝑎
) 

=
𝐶(𝑞)

𝐴(𝑞)
        (4) 

Therefore, the system representation in the form 

of states becomes:  

𝑦(𝑞) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑞) +

𝐶(𝑞)

𝐴(𝑞)
𝑒(𝑞)                    (5) 

This representation of formula (5) can be represented 

in vector form as follows [7, 16]: 

𝑦(𝑙) + 𝑎1𝑦(𝑙 − 1)+. . . +𝑎𝑛𝑎𝑦(𝑙 − 𝑛𝑎) = 

𝑏1𝑢(𝑙 − 𝑛𝑘)+. . . +𝑏𝑛𝑏𝑢(𝑙 − 𝑛𝑘 − 𝑛𝑏 + 1) 

+𝑐1𝑒(𝑙 − 1)+. . . +𝑐𝑛𝑐𝑒(𝑙 − 𝑛𝑐) + 𝑒(𝑙)           (6) 

Where 𝑢(𝑙) and 𝑦(𝑙) are the input and output, 

respectively, 𝑒(𝑙) is the zero-mean white noise 

disturbance of the variance 𝜎2, 𝑛𝑎, 𝑛𝑏 and 𝑛𝑐 are the 

degrees of the polynomials, respectively 𝐴(𝑞), 𝐵(𝑞) 
and 𝐶(𝑞), 𝑛𝑘 is the dead time of the process. 

From equation (6), the representation of a system 

with a single input and a single output SISO, 

conceding the effects of disturbances resulting from 

a filtered white noise, the representation of a system 

in the form of states becomes : 

𝐴(𝑞) = 𝐵(𝑞)𝑢(𝑙 − 𝑛𝑘) + 𝐶(𝑞)𝑒(𝑙)               (7) 

With: 

𝐶(𝑞) = 1 + 𝑐1𝑞
−1+. . . +𝑐𝑛𝑐𝑞

−𝑛𝑐            (8) 

Such that 𝑞−1 is the shift operator, given by: 

𝑞−𝑔𝑥(𝑘) = 𝑥(𝑘 − 𝑔) ; 𝑔 ∈ 𝑁            (9) 
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Fig. 6. Structure of the ARMAX model 

 

Modeling and identification based on the 

structure of the ARMAX model shows the 

effectiveness of the models developed for the 

vibrations of the rotor bearings of the studied 

turbine, which is based on the analysis of actual 

behavior observed and that of reference models. 

Practically, in the ARMAX models, the noise signal 

𝑒(𝑘) and the control signal 𝑢(𝑘) are subject to the 

same dynamics, because these disturbances are 

directly linked to the control input of the system. 

Hence, from model (5), it is possible to predict the 

future value of the output 𝑦(𝑘) using the previous 

measurements of the signals 𝑢(𝑘) and 𝑒(𝑘). 
Therefore, it is easier to calculate these predictions 

using computer hardware with different discrete 

values of different turbine signals.  

The most commonly used parametric estimation 

models can all be summarized in the general form of 

output error models ARMA, ARX and OE with 

exogenous variables in ARMAX form, in Table 4, 

which is used to represent in the form synthetic and 

coherent a set of system data in the form of reliable 

models. Based on discrete-time linear parametric 

estimation with minimization of prediction error and 

modeling flexibility in the presence of disturbances. 
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     Table 4. Parametric estimation methods   

Model Representation of states equations 𝑮(𝒒, 𝜽) 𝑯(𝒒, 𝜽) 

ARX 𝐴(𝑞)𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘) + 𝑒(𝑘) 
𝐵(𝑞)

𝐴(𝑞)
 

1

𝐴(𝑞)
 

ARMAX 𝐴(𝑞)𝑦(𝑘) = 𝐵(𝑞)𝑢(𝑘) + 𝐶(𝑞)𝑒(𝑘) 
𝐵(𝑞)

𝐴(𝑞)
 

𝐶(𝑞)

𝐴(𝑞)
 

OE, Output Error 𝑦(𝑘) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑘) + 𝑒(𝑘) 

𝐵(𝑞)

𝐹(𝑞)
 1 

The ARMAX structure is a method for 

identifying the parameters of systems based on their 

operating data. It aims to establish mathematical 

models that can describe these systems accurately. 

Therefore, it can be a useful tool for prediction and 

analysis in real time or offline applications. 

However, it requires a good data acquisition process 

on this equipment.  

For the development of the ARMAX model 

approach, one begins with the acquisition of the data 

of the operating inputs/outputs, then the choice of the 

structure of the ARMAX model used. Subsequently, 

the estimation of the model parameters will be made 

based on the validation tests of the identified turbine 

model parameters. Firstly, the ARMAX process for 

𝑥(𝑘) is determined, then the series 𝑦(𝑘) is filtered 

and the order (delay) of the system transfer function 

is determined. Then the vector 𝐶(𝑞) of the rest 

system dynamics is determined to arrive at the final 

estimate of the model parameters, as shown in the 

flowchart in Figure 7 below. 
 

Generation of the 
estimated residuals 

of the ARMA model 

Data acquisition of 
operating 

inputs/outputs 

ARMA model 
construction for the 

input )(kx  

Output filtering 
)(ky  

Calculation of correlations to determine the 

shape of the transfer function 

Validation test 

Estimation of model 

parameters 

Yes 

No 

Estimation of 
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Fig. 7. Flow chart of the proposed ARMAX 

approach 

The general form of the predictor �̂�(𝑘) of the 

output �̂�(𝑘) is given by: 

�̂�(𝑙, 𝜃) =
𝐵(𝑞)

𝐶(𝑞)
𝑢(𝑙) + [1 −

𝐴(𝑞)

𝐶(𝑞)
] 𝑦(𝑙)           (10)  

Where: 

𝐶(𝑞)�̂�(𝑙, 𝜃) = 𝐵(𝑞)𝑢(𝑙) + [𝐶(𝑞) − 𝐴(𝑞)]𝑦(𝑙)  
(11) 

Adding [1 − 𝐶(𝑞)]�̂�(𝑙, 𝜃) to both sides of this 

expression gives:  

�̂�(𝑙, 𝜃) = 𝐵(𝑞)𝑢(𝑙) + [1 − 𝐴(𝑞)]𝑦(𝑙) 
+[𝐶(𝑞) − 1][𝑦(𝑙) − �̂�(𝑙, 𝜃)]            (12)  

 Such as:  

𝜀(𝑙, 𝜃) = 𝑦(𝑙) − �̂�(𝑙, 𝜃)                (13)  

And if we introduce the two vectors: 

�⃑⃑�(𝑙, 𝜃) = [

−𝑦(𝑙 − 1). . . −𝑦(𝑙 − 𝑛𝑎)

, 𝑢(𝑙 − 1). . . 𝑢(𝑙 − 𝑛𝑏),

𝜀(𝑙 − 1, 𝜃). . . 𝜀(𝑙 − 𝑛𝑐, 𝜃)
]

𝑇

         (14) 

With:  

�⃑� = (𝑎1. . . 𝑎𝑛𝑎 , 𝑏1. . . 𝑏𝑛𝑏 , 𝑐1. . . 𝑐𝑛𝑐)
𝑇
            (15) 

Then, the predictor equation (12) can be 

rewritten as follows:  

�̂�(𝑙, 𝜃) = �⃑⃑�(𝑙, 𝜃)𝑇 ⋅ �⃑�                  (16)  

Where, the prediction error 𝜀(𝑙) for the ARMAX 

model can be described as follows:  

𝜀(𝑙, 𝜃) = [𝐶(𝑞, 𝜃)]−1[𝐴(𝑞, 𝜃)𝑦(𝑙) − 𝐵(𝑞, 𝜃)𝑢(𝑙)]   
(17) 

The criterion function is sometimes called a cost 

function and is defined by:  

𝑉𝑁(𝜃) =
1

𝑁
∑ 𝜀2(𝑙, 𝜃)𝑁−1
𝑙=0                   (18) 

Where 𝑁 is the taken number of samples.  

Indeed, the sought estimator �̂�𝑁 of 𝜃 must 

therefore minimize the function 𝑉𝑁, we obtain:  

�̂�𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝑉𝑁(𝜃)             (19) 

In this parametric identification study, the Gauss-

Newton optimization algorithm is used as a method 

to find the best model parameters. This Newton-

Raphson search algorithm is exploited to obtain the 

optimal parameters of the estimator �⃑̂�𝑁 and to 

minimize the criterion function 𝑉𝑁(𝜃), generally this 

function is given as following [10, 15]: 

�⃑�
̂
𝑁
(𝑖+1)

= �⃑�
̂
𝑁
(𝑖)
− 𝜆𝑁 ⋅ (�̈�𝑁 (�⃑�

̂
𝑁
(𝑖)
))

−1

⋅ �̇�𝑁 (�⃑�
̂
𝑁
(𝑖)
)  (20) 

Where �̇�(�⃑�) is the gradient of 𝑉𝑁(𝜃) is given by:  

�̇�𝑁(�⃑�) = −
1

𝑁
∑ 𝜓(𝑙, �⃑�)𝜀(𝑙, �⃑�)𝑁−1
𝑙=0       (21) 

With: 
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𝜓(𝑙, �⃑�) =
1

𝐶(𝑞)
�⃑⃑�(𝑙, �⃑�)              (22) 

𝜓(𝑙, �⃑�) = [
𝜕�̂�

𝜕𝑎1
. . .

𝜕�̂�

𝜕𝑎𝑛𝑎
,
𝜕�̂�

𝜕𝑏1
. . .

𝜕�̂�

𝜕𝑏𝑛𝑏
,
𝜕�̂�

𝜕𝑐1
. . .

𝜕�̂�

𝜕𝑐𝑛𝑐
]

𝑇

 

(23) 

Thus, the Hessian of the function 𝑉𝑁(𝜃) is given 

by: 

  �̈�𝑁(�⃑�) =
1

𝑁
∑ 𝜓(𝑙, �⃑�)𝑁−1
𝑙=0 𝜓(𝑙, �⃑�)

𝑇
 

−
1

𝑁
∑ �̇�(𝑙, �⃑�)

𝑁−1

𝑙=0

𝜀(𝑙, �⃑�)
𝑇

 

=
1

𝑁
∑ 𝜓(𝑙, �⃑�)𝑁−1
𝑙=0 𝜓(𝑙, �⃑�)

𝑇
−𝑀(�⃑�)               (24) 

From where:  

𝑀(�⃑�) =
1

𝑁
∑ �̇�(𝑙, �⃑�)𝜀(𝑙, �⃑�)

𝑇
𝑁−1
𝑙=0              (25) 

Nevertheless, the main disadvantage of the 

Newton-Raphson algorithm is that the second-order 

term 𝑀(�⃑�) of  �̈�(�⃑�) is difficult to calculate. 

Therefore, to reduce and simplify the calculation, it 

is necessary and efficient to neglect the term 𝑀(�⃑�). 

So, when we neglect the second-order term 𝑀(�⃑�) 

in the Hessian matrix �̈�(�⃑�), the use of the Gauss-

Newton algorithm will be easily done. Thus, 

equation (17) becomes:  

�⃑�
̂(𝑖+1) = �⃑�

̂(𝑖) − 𝜆𝑁 ⋅ (�̈�𝑁 (�⃑�
̂(𝑖)))

−1

⋅ �̇�𝑁 (�⃑�
̂(𝑖))  (26) 

With: 

�̈�(�⃑�) ≈
1

𝑁
∑ 𝜓(𝑙, �⃑�)𝜓(𝑙, 𝜃)

𝑇
𝑁−1
𝑙=0                          (27) 

Where 𝜆 is the step, generally considered a positive 

decreasing function. 

After the determination of the model parameters 

with the proposed ARMAX structure, the validation 

of this model is carried out using the robustness tests 

of this algorithm, as it is shown in Figure 3. 

However, the identification is carried out by 

minimizing a quality criterion which characterizes 

the difference between the behavior of the system 

given by the various measures, and that of its 

reference model.  

To assess the convergence of the proposed 

ARMAX approach, the Akaike Information 

Criterion (AIC) is used to measure the model quality. 

This performance criterion is based on the 

calculations of the final prediction errors (FPE), 

given by the following formula: 

𝐹𝑃𝐸 = 𝑉𝑁(�̂�𝑁) ⋅ (
1+

𝑆

𝑁

1−
𝑆

𝑁

)             (28)   

where 𝑁 is the number of samples and 𝑆 is the 

number of estimated parameters. 

Similarly, to ensure that the model parameters 

are well adjusted, a testing process based on the 

determination of the normalized root mean square 

error (NRMSE) will be carried out. Hence, the 

measures of the difference between the real variables 

and their estimates are defined by the following 

goodness-of-fit formula:  

𝑓𝑖𝑡(%) = 100 (1 −
‖𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑‖

‖𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−�̄�𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑‖
)      (29)   

 As well, the root mean square error is used to test 

the quality and performance of model parameters, 

which is defined by:  

𝑀𝑆𝐸 =
1

𝑁
∑ 𝜀𝑇(𝑡). 𝜀(𝑡)𝑁
𝑡=1          (30)   

In the next section, the ARMAX approach is 

applied to identify the model parameters of an 

MS5002B gas turbine, fitted by a recursive least 

squares procedure. This in order to evaluate the 

output quantities which represent the different speed 

variations and the vibration variations of the studied 

bearings of this rotating machine. To do this, the 

implementation steps of the ARMAX approach is 

shown in Figure 7, with parametric identification of 

the transfer function using turbine observation data, 

in order to monitor and detect their malfunctions. 

 

4. RESULTS AND DISCUSSION 

 

During the inspection conducted on the 

MS5002B gas turbine under study, the vibratory 

behavior of this rotating machine was investigated. 

The process of identifying turbine parameters 

involved utilizing a dataset of vibration signals 

collected on-site following a maintenance operation. 

These data were employed in the ARMAX modeling 

steps discussed in the previous section, enabling the 

successive identification of vibration modeling 

parameters for the studied turbine bearings. 

Furthermore, by implementing actual turbine 

operating data, a comparison can be made between 

the estimated models derived from the ARMAX 

structure and the observed behavior of these 

bearings. Consequently, the error serves as a metric 

for evaluating and testing the accuracy of these 

models, as demonstrated in the case studies 

conducted on the ARMAX models. 

Indeed, these actual operating data of the 

examined turbine were explored to identify the 

parameters of the ARMAX model with multi-input 

and multi-output MIMO structure of the turbine 

system. In this case, the input variables chosen in this 

identification are; The HP high pressure turbine rotor 

rotational speed 𝑢1 and the LP low pressure turbine 

rotor rotational speed 𝑢2. As well as the output 

variables are; The vibration variation in the vertical 

direction 𝑦 of the bearing #1 of  the high pressure 

turbine HP rotor 𝑦1 and the vibration variation in the 

vertical direction 𝑦 of the bearing #3 of the low 

pressure turbine LP rotor 𝑦2. 

To do this, the filtered HP high pressure turbine 

rotor speed variation signals are shown in Figure 7 

and Figure 8 shows the LP low pressure turbine rotor 

speed variation. These signals are used to identify 

the ARMAX vibration model parameters of 

MS5002B turbine bearings #1 and #3. 
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Fig. 7. HP high pressure turbine rotor speed 

variation 

 

 

Fig. 8. LP Low pressure turbine rotor speed 

variation 

 

To ensure maximum turbine availability with 

good real-time monitoring with the proposed 

ARMAX identification approach, via vibration data 

collect and process to develop fault indices in the 

vibration box. This can be used to minimize turbine 

downtime as well as to minimize maintenance costs, 

with scheduled scheduling of maintenance overhaul 

actions. However, these measurements of turbine 

operating data recorded on bearings #1 and #3 allow 

the identification of the output variables of this 

rotating machine. This makes it possible to 

implement the parameter estimation method of the 

ARMAX model with acceptable identification 

accuracy, in relation to the desired turbine behaviors. 

 Hence, the results obtained are shown by 

Figure 9 which shows the vibration variation of 

bearing #1 of the HP high pressure turbine rotor 𝑦1 
and by Figure 10 which shows the vibration variation 

of bearing #3 of the LP low pressure turbine rotor 𝑦2. 

In these results a comparison is presented between 

the actual measurements and the vibration prediction 

outputs on bearings #1 and #3. This shows a better 

fit for these two outputs 𝑦1 and 𝑦2 with a prediction 

rate equal to 73.78% and 88.25% respectively. This 

confirms the good efficiency of the parameter 

estimation approach of the ARMAX model applied 

to the MS5002B gas turbine. 

 

Fig. 9. Variation of vibration of bearing #1 of 

the HP high pressure turbine rotor 

 

 

Fig. 10. Variation of vibration of the bearing 

#3 of the low pressure turbine LP rotor 

 

In order to test the robustness of the developed 

ARMAX model, validation tests were carried out by 

analyzing the residuals according to the following 

two hypotheses:  

• Test of the residual autocorrelation function, 

•  Cross-correlation test between past input and 

residual. 

The quality of the estimated model can be 

assessed if the autocorrelation function is located in 

the confidence interval composed of two straight 

lines. Hence, Figure 11 shows the analysis of the two 

functions of residual autocorrelation and 

intercorrelation of the vibration variation of the 

bearing #1 of the HP high pressure turbine rotor 𝑦1. 

These results show that the prediction error is inside 

the confidence region, which confirms that the 

obtained model is reliable. 

 

Fig. 11. Validation of vibration model of the 

bearing #1 

 

Considering the results obtained for the vibration 

variation of bearing #3 of the LP low pressure 

turbine rotor  𝑦2, shown in Figure 12, the behavior 

of the vibration model prediction error is very 
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acceptable for a full load service of turbine 

examined. Hence, the level of vibration in this 

bearing #3 does not reach the alarm thresholds 

recorded for the turbine. 

 

 

Fig. 12. Validation of vibration model of the 

bearing #3 

 

Moreover, additional validation tests were 

conducted during the turbine startup phase and 

throughout its establishment to assess the robustness 

of the developed ARMAX model in this study. For 

this case study, all the data used for model 

identification was collected on-site through various 

measurements performed on the turbine shaft to 

determine the ARMAX model. 

Figure 13 illustrates the speed variation of the 

low-pressure (LP) turbine rotor during the startup 

phase until the stable operating phase, representing 

the established turbine speed. A closer look is given 

to the transition zone from the dynamic regime to the 

stable regime within the time interval of 260-280 

seconds. This zoomed-in view provides a more 

accurate representation of the system, which carries 

a high risk of transitioning towards instability. It is 

within this critical zone that the ARMAX model is 

trained using operating data from the startup phase 

to the stable operating regime, ensuring 

comprehensive learning of the system dynamics. 

 

 

Fig. 13. Speed variation of the low pressure 

turbine LP rotor during the start-up phase to 

the established operating regime 

 

Additionally, Figure 14 presents a comparison 

between the signals predicted by the ARMAX model 

and the measured signals during a test conducted on 

a sample of data collected over a time interval of up 

to 6000 seconds. The graph demonstrates a close 

alignment between the measured and predicted 

signals for the bearing case #3 of the low-pressure 

(LP) rotor, with an error below 0.03. This level of 

error is considered acceptable and indicates a high 

degree of accuracy in the predicted signals. 

 

Fig. 14. Comparison produced between the 

predicted signals via the ARMAX model and 

the measured signals for the case of bearing 

#3 of the LP rotor 

 

Furthermore, during the startup phase, specific 

tests were conducted to evaluate the ARMAX 

model's response to different inputs, focusing on the 

variation of the high-pressure (HP) turbine rotor 

speed, as depicted in Figure 15. 

 

 
Fig. 15. Speed variation of the HP high 

pressure turbine rotor during the start-up 

phase until the operating phase 

 

To further investigate the comparison between 

the measured and predicted signals for the bearing 

case #1 of the HP rotor, Figure 16 illustrates the 

predicted vibration amplitude in relation to the 

measured signal during both transient and steady 

states. The graph confirms that the output signal 

predicted by the ARMAX model closely aligns with 

the measured signal on the HP turbine rotor, 

validating its ability to accurately capture the 

behavior of the studied turbine. 

Based on the results obtained from utilizing the 

ARMAX model under various turbine operating 

conditions, including normal and extreme scenarios 

during the startup phase, the performance is deemed 

satisfactory when compared to the measured signals 

in both transient and steady states. 
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Fig. 16. Comparison produced between the 

signals predicted via the ARMAX model and 

the signals measured for bearing case #1 of 

the HP rotor 

 

Moreover, in order to observe the behavior and 

assess the precision of vibration capture on bearings 

#1 and #3, rigorous validation tests were conducted 

by subjecting the ARMAX model to real-time 

scenarios that replicate the operating conditions it 

would encounter in practical applications. These 

tests involved comparing the model's predictions 

with reference data and performing statistical 

analyses to evaluate its accuracy under different 

circumstances. Through these rigorous validation 

tests, potential weaknesses or limitations of the 

ARMAX model were identified, allowing for 

necessary adjustments or improvements to be made. 

Consequently, the results obtained using the 

ARMAX model structure consistently demonstrate 

its superior performance and reliability in practical 

applications. The robustness of the ARMAX model 

developed in this study was successfully validated 

through tests conducted during the startup phase and 

until the commissioning of the turbine. 

The results of the validation tests carried out of 

the two models ARMAX and ARX are presented in 

Table 5, it is clear that the estimated adjustment 

values of the ARMAX model developed could 

represent [73.78; 88.25] % of the data used, while 

the model ARX could represent only [69.78; 85.94] 

%. Also, the structure of the ARMAX model has a 

lower FPE than that of the ARX structure, which 

shows the effectiveness of the ARMAX approach on 

the ARX model.  

Finally, the results of the structure of the 

ARMAX model are obtained for the bearing #1 and 

bearing #3 vibration variation model in the form of a 

state representation, with a multi-input and multi-

output MIMO structure. Hence, the vibration 

variation model of the bearing #1 of the HP high 

pressure turbine rotor 𝑦1 is expressed by:  

𝐴(𝑞)𝑦1(𝑘) = 𝐴𝑖(𝑞)𝑦𝑖(𝑘) + 𝐵(𝑞)𝑢(𝑘) +
𝐶(𝑞)𝑒1(𝑘) (31)  

 What is given:  

𝐴1(𝑞) = 1 − 0.3695𝑞−1 − 0.6458𝑞−2 

𝐴2(𝑞) = 0.3968𝑞−1 − 0.3494𝑞−2   

𝐵1(𝑞) = 0.07306𝑞−9 − 0.0766𝑞−10 

𝐵2(𝑞) = −0.08075𝑞−9 + 0.08466𝑞−10 

𝐶(𝑞) = 1 − 0.4582𝑞−1 − 0.3013𝑞−2

− 0.2207𝑞−3 

 
Table 5. ARMAX and ARX models estimation validation 

results 

Models output 

Vibration 

model of HP 

bearing  #1 

𝑦1 

Vibration 

model of LP 

bearing  #1 

𝑦2 

Best fit 

% 

ARMAX 73.78 88.25 

ARX 69.78 85.94 

FPE 
ARMAX 9.915×10-10  

ARX 11.755×10-10  

MSE 
ARMAX 6.487×10-5  

ARX 7.052×10-5  

ARMAX 

Order   

na= [2 

2;2 2]   

nb= [2 

2;2 2] 

nc=[3;3]                   

nk= [9 9;9 9] 
 

ARX 

Order 

na= [2 

2;2 2] 

nb= [2 2;2 2] 

nk= [1 1;1 1] 
 

  

 As for the vibration variation model of the 

bearing #3 of the low pressure turbine rotor LP 𝑦2 is 

expressed as follows: 

𝐴(𝑞)𝑦2(𝑘) = −𝐴𝑖(𝑞)𝑦𝑖(𝑘) + 𝐵(𝑞)𝑢(𝑘) + 𝐶(𝑞)𝑒2(𝑘) 
(32)   

 What is given: 

𝐴1(𝑞) = 1 − 0.1032𝑞−1 − 0.8792𝑞−2 

𝐴2(𝑞) = −0.3073𝑞−1 + 0.3017𝑞−2 

𝐵1(𝑞) = 0.06633𝑞−9 − 0.06508𝑞−10 

𝐵2(𝑞) = −0.07322𝑞−9 + 0.07184𝑞−10 

𝐶(𝑞) = 1 − 0.7291𝑞−1 − 0.06297𝑞−2

− 0.0706𝑞−3 

These state representations of vibration models 

of bearings #1 and #3 based on the ARMAX 

approach are an effective means for monitoring the 

operation of the turbine studied, because the analysis 

of vibration behavior makes it possible to identify 

their causes and to accurately deduce their location 

in real time. This allows you to make good decisions 

to carry out maintenance interventions before these 

vibrations become critical. 

 

5. CONCLUSION 

 

In this work, we have estimated the parameters 

of the vibration model of the bearings of an 

MS5002B gas turbine using an ARMAX model 

approach. We have focused on the high-pressure 

(HP) turbine bearing #1 and the low-pressure (LP) 

turbine bearing #3, using the real data from their 

operation. We have shown that the ARMAX 

approach can provide better predictions of the 

vibration models of these bearings, compared with 

the actual behavior of the HP and LP rotors of the 

turbine, even in the presence of measurement noise. 

We have validated our approach using various 

performance criteria, such as RMSE, FPE and MSE, 

and residual analysis with autocorrelation and cross-

correlation tests. The results were very satisfactory 

and demonstrated the efficiency of the ARMAX 
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approach for estimating and detecting the vibration 

behavior of the turbine. Moreover, we have 

determined the vibration monitoring thresholds 

using this approach, which can help to identify faulty 

bearings and their causes quickly. This can improve 

their availability and reduce turbine downtime. 

Furthermore, we have integrated the ARMAX model 

into a decision-making mechanism for monitoring 

this rotating machine. This can enhance the state 

assessment of vibrations of these bearings and 

ensure the continuity of production of the 

installation. The ARMAX approach has also opened 

up some future directions for this work. It would be 

interesting to test and develop other techniques and 

compare them with the ARMAX method, to improve 

the quality of parameter estimation. It would also be 

useful to extend this method to nonlinear models in 

a temporal context, to better capture the signatures of 

vibratory phenomena. Additionally, it would be 

worthwhile to study models with distributed 

parameters, to enrich and increase the consistency of 

the predicted outputs with the measured outputs. 

This may increase the fidelity of the identified model 

to represent the turbine output variables. 
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