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Abstract 

This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using 

Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC 

controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and 

availability under broken rotor bars. However, the performances of classical VC control are often characterized 

by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control 

and iterative learning control is described. The input control signal of the VC controller is gradually regulated 

by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach 

related to active and reactive power ripples overshoot and response time have been explained. Which active 

and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and 

reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize 

the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition. 
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1. INTRODUCTION  

 

In the last few decade, The Doubly-fed Induction 

Generator has gained more interest in large wind 

turbine because of their reliability, robustness, 

reduced inverter costs, power control capability and 

full variable speed operation [1]. Despite these 

advantages, this kind of generator can be affected by 

several faults that deteriorate their performances, 

which are current sensor faults, short circuit and 

rotor failures including broken rotor bars [2]-[3], the 

broken rotor bars is one of the most common faults 

in DFIG, it can be created by mechanical cracks or 

overloads. To overcome this drawback we use the 

fault tolerant control [4]. 
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The fault tolerant control is the best choice for 

eliminating previous fault because it allows a system 

to keep operating even the occurrence of faults, 

therefore the application of FTC on DFIG provides 

significant economic benefits to the wind turbine [5]. 

Much researchers classifies fault tolerant control 

into two parts [6], the first called active fault tolerant 

control (AFTC) and the second called passive fault 

tolerant control (PFTC). The AFTC aims to ensure 

the stability and performance, by modifying online 

the parameters or the structure of the controller. This 

solution requires to be reconfigured based on the 

block information given for fault detection and 

isolation on (FDI) [7]-[8], in other hand the passive 

approach uses a robust controller that can maintain 

good performance when faults occur; unlike the 

active approach, this method does not require fault 

detection and isolation blocks. The PFTC can avoid 

the time required in the AFTC for online diagnostics 

and design monitoring, which is very necessary in 

practical situations [9]-[10]. 

In recent years, the power quality is still a big 

challenge. Hence, many research publications have 

studied the improvement of the power quality using 

VC controller. This approach are frequently utilized 
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in wind turbines because they have the ability to 

adjust the DFIG model [11]-[12]. In [13], authors 

present an improvement of the power derived from 

wind energy, using direct and indirect vector control, 

taking into account the variation of wind speed that 

causes a challenge in energy production. In addition, 

the work in [14] proposes a new direct vector control 

(DVC) for a doubly fed induction generator (DFIG) 

based on space vector modulation (SVM) using in a 

wind turbine system (WTS). However, the VC  

control method has poor performance and low 

robustness when faults occur. Thus, in our paper an 

effective Fault Tolerant Control (FTC) approach for 

power quality enhancement in a doubly-fed 

induction generator is designed. The proposed 

technique is based on combining an iterative 

learning controller (ILC) with VC control  under the 

rotor faults. This approach is favourable for 

industrial power implementations due to its 

effectiveness and robustness in critical process 

situations. The ILC technique has broad interest by 

researchers in systems subjected to periodic faults, 

because this strategy can modify the input signal 

repeatedly when the monitoring task is performed in 

order to get high disturbance rejection [15]-[16]. In 

[15] two iterative learning control techniques 

applied in the time and frequency domains, 

respectively, have been presented to minimize 

periodic speed ripples caused by torque pulsations. 

The authors in [16] develop an effective control 

approach for improving power quality in a four-leg 

inverter-based standalone system. The suggested 

scheme combines a sliding mode controller (SMC) 

with an iterative learning controller (ILC) for 

harmonic compensation. 

In this work, a new combined VC-ILC approach 

for doubly-fed induction generator has been 

presented and investigated. The DFIG model and 

more details of the suggested control technique have 

been explicated. Active and reactive power ripples, 

overshoot and time response improvement, and 

accuracy have all been demonstrated and compared. 

The remainder of this article is structured as 

follows: first the mathematical  model of the doubly-

fed induction generator (DFIG)  and the Vector 

control for active and reactive power controllers is 

presented in Section 2. Section 3 discusses, the 

defective model of DFIG. Section 4 develops the 

proposed FTC (VC-ILC). The simulation results are 

reported in Section 5. Section 6 gives some 

concluding remarks. 

 

2. MATHEMATICAL MODELS 

 

The mathematical model of a Doubly Fed 

Induction Generator (DFIG) comprises equations 

for the stator and rotor windings, the magnetic flux, 

and the electromagnetic torque. The mathematical 

model is critical for understanding the behavior of 

DFIGs and for enhancing their performance in wind 

power systems. 

 

2.1. DFIG Model 

The DFIG's voltage and flux equations in the 

park reference are illustrated in E q. as follows [17] 

ὠ ὙὍ • ύ•           (1) 

   ὠ ὙὍ • ύ•          (2) 

ὠ ὙὍ • ύ•         (3) 

ὠ ὙὍ • ύ•        (4) 

And  

• ὒὍ ὓὍ           (5) 

• ὒὍ ὓὍ           (6) 

• ὒὍ ὓὍ           (7) 

• ὒὍ ὓὍ           (8) 

The equation  below gives the electromagnetic torque  

ὝὩ ὴ Ὅ• Ὅ•     (9) 

Where : LS , Lr and M are stator, rotor and mutual 

inductances , Idr and Iqr are rotor current components, 

Ids and Iqs are stator current components, Rs and Rr 

are the stator and rotor resistance, Vds and Vqs are 

stator voltage components, Vdr and Vqr are rotor 

voltage components, indexes d, q stand for the direct 

and quadrature components. ύ and  ύ  are the 

synchronous and rotor speed, Ὕis the  

electromagnetic torque, • ,• ,• and •  are the 

stator and the rotor fluxes, σ is the coefficient of 

dispersion Ὢis the viscous friction coefficient, ὐ is the 

inertia, andὴis the number of pole pairs. 

The equations below represent the classical 

modelling of the doubly fed induction generator 

[18].   
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Where:  

 „      

The equations of the Active and reactive stator 

powers are: 

ὖ ὠ Ὅ ὠὍ

ὗ ὠὍ ὠ Ὅ
                    (14) 

 
2.2. Vector Control 

Vector control is among the best choice utilised 

for electrical devices. It is predicated on the idea that 

the system is identical to a separate excitation DC 

machine [13]. In this situation, we suggested a 

DFIG control rule based on the orientation of the 

stator flux, which is employed to operate a generator. 

The latter emphasizes the relation between the stator 

and rotor components. These connections can help 

in acting on rotor signals to regulate the interchange 

of active and reactive power between the machine's 

stator and the grid. It can be described in the 

following state equations whose: • • and 

• π, with neglecting the winding stator 

resistance Rs [14].     

 

ừ
Ử
Ừ

Ử
ứ
ὠ π        
ὠ ὠ ύ•     

ὠ ὙȢὍ ύ•

ὠ ὙȢὍ ύ•

              

(15) 

In addition, the flux is expressed by: 

ừ
Ừ

ứ
• • ὒȢὍ ὓȢὍ
π ὒȢὍ ὓȢ•   

• ὒȢὍ ὓȢ•  
• ὒȢὍ ὓȢ•  

                   (16) 

 The equations below represent the stator powers 

and rotor currents: 

ὖ
Ȣ
ȢὍ   

ὗ
Ȣ

Ȣ
ȢὍ

                        (17) 

Ὅ
Ȣ
Ȣὖ  

Ὅ
Ȣ

Ȣὗ
                        (18) 

The control voltages obtained are expressed by the 

equations as follows: 

ừ
Ử
Ừ

Ử
ứὠ Ὑ ὒ ίὍ Ὣύ ὒ ȢὍ

ὠ Ὑ ὒ ίὍ Ὣύ ὒ Ὅ

 Ὣ
Ȣ

   

(19)    

In figure 1. It presents the block diagram of 

vector control applied to doubly fed induction 

generator.  

 

3. DFIG FAULTY MODEL 

 

This part represents the model of DFIG in the 

event of rotor faults. According to [5], the 

occurrence of these faults generates asymmetry in 

the DFIG and makes harmonics in the stator 

windings, so a sinusoidal component of 

pulsation  ς“Ὢ is added to the quadratic and 

direct components of stator current. The following 

ecosystem represents the sinusoidal components that 

caused by the occurrence of faults [19]-[20] 
ύ Ὓ″Ȣύ ύᶰℜ             (20) 

With  

″     ȢȢȢ    

Where  

ϖ: The pulsations vector, nf : The broken bars faults 

numbers 

Ὓ″ ὨὭὥὫὛȟȟȢȢȢὛȟ  

Ὓȟ ὨὭὥὫ
π 
 π

π 
 π

     (21) 

Where  ȟὯ ρȟȢȢȢȟὲare the pulsations of the 

harmonics caused by the rotor faults. Faults created 

by broken bars produce harmonics component at the 

frequency as explained in: 

Ὢȟ ρ ςὯί Ὢ                 (22)                                                                                                                                

Whereί: The slip ίύ ί  , f: The supply 

frequency, k: Positive integer Ὧ ρȟȢȢȢȟὲ  

The harmonics' amplitudes and phases are unknown; 

they depend on the initial state ύπ of the 

ecosystem. Then, the additive sinusoidal terms can 

be as a suitable combination of the ecosystem state, 

i.e: 
Ὥ ᴼὭ ὗύ
Ὥ ᴼὭ ὗύ                    (23) 

With  

Fig. 1. Block diagram of VC applied to DFIG [17] 
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ὗ ρ π ρ π ȢȢȢρ π
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The derivative of (23) is given by  

ᴼ ὗȢὛȢύ

ᴼ ὗȢὛȢύ
             (24) 

After introducing the additive perturbing terms 

ὗύ and ὗύand their derivatives ὗȢὛȢύ,ὗȢὛȢύ, 

respectively, we get the new state equations  defining 

the DFIG faulty model: 
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Where:ῲ ,ῲ ,ῲ , andῲ describe the fault 

terms, presented by:  

 

ừ
Ử
Ừ

Ử
ứῲ ὥὗ ὥὗ ὥὗ   

ῲ ὥὗ ὥὗ ὥὗ   

ῲ ὥὗ ὦὗ ὥὗ ὗὛ

ῲ ὥὗ ὦὗ ὥὗ ὗὛ

 (29) 

 

4. FAULT-TOLERANT CONTROL 

STRATEGY 

 

4.1. ILC Approach For DFIG 

Iterative learning control is a method for 

enhancing the monitoring efficiency of machines, 

which function in a repetitive manner over a set 

length of time. It is beneficial for problems where a 

system needs to handle various kinds of inputs in the 

face of modeling uncertainty, design uncertainty, or 

system nonlinearities in response to periodic input 

disturbances. The iterative learning controller 

calculates the error that is saved in the memory for 

use in the following cycle of operation. [15]- [21]-

[22]. The proposed ILC approach is shown in Figure 

2, with the learning law as follows: 

ὺ ὸ ρ ὺὸ  ‐ὸ
ῲ‐ ὸ               (30) 

Where ὺὸ is the control signal that generated 

from ILC , is the forgetting factor , ‐ὸ is the 

error signal of the active power with ὴᶻὸ ὴ ὸ, 

Ὥ ρȟςȟσȢȢȢ is the iteration number , ῲ and   are the 

previous and current cycle feedback gains, 

respectively. (See [15]-[16] for more information 

about determining the learning gains   and ῲ). 

Figure. 3 describes the overall block diagram of the 

combination between VC and the proposed control 

strategy (VC-ILC). When the system is subjected to 

critical disturbances that can deteriorate the overall 

system performances. Therefore, the suggested 

approach can change the input control trajectories 

when the control operation is repeated, with the 

objective of converging to zero tracking error, in the 

meantime, the proposed ILC controller exploits 

undesirable output voltage disturbances, whose 

frequencies are encompassed within the bandwidth 

of the vector controller. 

 

Fig. 2. Block diagram of the ILC scheme [15] 

 

 

Fig. 3. Block diagram of the classical control 

(VC) combined with the proposed strategy 

(ILC) 

 

5. SIMULATION RESULT AND 

INTERPRETATION 

 

In order to validate the feasibility and robustness 

of the suggested approach in faulty operation as 

illustrated in the preceding section, we show some 

tests of the MATLAB/Simulink for a doubly fed 

induction generator, that  is under the load torque 

equal 10 Nm applied at t = 2s whose nominal 

electrical and mechanical parameters are given in 

Table 1. 
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Table 1. DFIG parameters  
Parameters Definition Value Unit 

Pn Nominal power 3 KW 

F Stator frequency 50 Hz 

V Stator voltage 220 V 

Ls Stator inductance 0.084  H 

Lr Rotor inductance    0.081  H 

Lm Mutual inductance 0.078  H 

Rs Stator resistance 0.455  Ω 

Rr Rotor resistance 0.6  Ω 

J  Inertia             0.3125  Kg.m2 

fv Viscous friction 0.00673 Kg.m2/s 

P Number of pole pairs. 2  

The Vector control and the suggested VC-ILC 

are used to assess the performance of the DFIG when 

the faults occur. Figure 4. reveals the efficiency of 

the proposed VC-ILC compared to the traditional 

power trajectories converge to their desired VC 

when the DFIG is subjected to rotor faults. 

(a) Active power  

 

(b) Zoom A of active power   

 

(c) Zoom B of active power  

 
Fig. 4. Active power signals with VC and 

proposed VC-ILC controller in faulty 

condition 

 

We can observe that the Active and the reactive 

references with satisfactory dynamics, when the 

proposed VC-ILC is applied unlike the traditional 

VC that appears high ripples. 

Depending on Figure.4-5-6, and Table.2, that 

shows the active and reactive power signals, Direct 

and quadratic signals with the traditional VC and the 

proposed VC-ILC in faulty conditions, we notice 

that: 

¶ The Active power response time is minimized 

more than 84 % (1.65 s for classical VC instead 

0.25 s for suggested VC-ILC) .It is apparent that 

the new FTC (VC-ILC) controller improves the 

time response of the active power, (see figure 

4a). 

¶ The Active power overshoot is minimized more 

than 45 % (33 W for classical VC instead 18W 

for suggested VC-ILC) (see the zoom A of 

active power presented in figure 4b).  

(a) Reactive power 

 
(b) Zoom A of reactive power 

 

(d) Zoom B of reactive power 

 
Fig. 5. Reactive power signals with VC and 

proposed VC-ILC controller in faulty 

conditions 
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¶ The response time (s) of the Reactive power is 

improved more than 87.5% (1.6 s for classical 

VC instead 0.2 s for suggested VC-ILC) as 

shown in figure 5a. 

¶ The reactive power overshoot is minimized 

more than 35 % (85 VAR for classical VC 

instead 55  VAR for suggested VC-ILC) (see the 

zoom A of reactive power presented in figure 

5b). 

¶ The reactive power ripples is decreased for 

traditional VC from 30 VAR to 0.1 VAR when 

the suggested approach (VC-ILC) utilizing as 

described in the figure 5c). The suggested FTC 

has an improved dynamic, which minimizes the 

active and reactive power ripples and overshoots 

considerably. As a result of these characteristics, 

the new algorithm is appropriate for applications 

requiring specialized performance. 

 

Fig. 6. Direct and Quadratic signals with VC and 

proposed VC-ILC controller in faulty conditions 

 

¶ The ripples of the direct rotor current is 

minimized for traditional VC from 1.2 A to 0.1 

A using suggested (VC-ILC) so enhancement 

for 91 % (see figure 6a). 

¶ The response time of the direct rotor current is 

minimized more than 87.5 % (1.6 A for 

conventional VC instead 0.2 A for proposed 

VC-ILC) (see figure 6a). 

¶ The response time (s) of the quadratic rotor 

current is improved more than 84% (1.65 s for 

conventional VC instead 0.25 s for proposed 

VC-ILC) as shown in the figure 6b. 

¶ The ripples of the quadratic rotor current is 

reduced more than 87.5% (0.4 VAR for 

conventional VC instead 0.05 VAR for 

proposed VC-ILC), (see figure 6b) 

 

5.1. Robustness test 
In order to evaluate the robustness of the suggested 

control approach, the values of inductances M, Lr 

and Ls are multiplied by 0.5, the value of the Rs and 

Rr are multiplied by 2. Figures.7 and 8 show the 

effects of parameters variation on the active and 

reactive power responses for the VC and VC-ILC 

controllers.   

(a) Active power 

 
(b) Reactive power 

 
(c) Zoom of active power 

 
(d)  Zoom of reactive power 

 
Fig. 7. Active and reactive power behaviour 

using VC and VC-ILC control with parameter 

variation. 
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Depending on Figure 7, we notice that these 

modifications have an evident influence on the 

active and reactive power curves, and the effect 

appears to be more noticeable for the VC control 

compared to the VC-ILC method. For example, the 

time response of the active power is improved from 

1.4 s for traditional VC to 0.9 s using the suggested 

VC-ILC (see Figure 7 a). Thus, it can be concluded 

that the proposed VC-ILC is more robust than the 

conventional VC. 

 

Table. 3. Comparative results between VC and VC-ILC 

with parameter variation 

 

Table 3 summarizes the major improvement of 

the suggested VC-ILC compared to the classical VC 

with parameter variation (Rs×2, Rr×2, Lr×0.5, 

Lm×0.5, Ls×0.5) we can get some notice: 

• The Active power response time (s) is decreased 

for classical VC from 1.4s to 0.9s using 

suggested VC-ILC) so enhancement for 35 % as 

shown in figure 7a, 7c; 

• The response time (s) of the Reactive power is 

reduced more than 83% (1.35s for conventional 

VC instead 0.22s using proposed VC-ILC) (see 

figure 7b, 7d). 

 

6. CONCLUSION 

 

A fault-tolerant control approach based on the 

combination between Vector Control (VC) and 

Iterative Learning Controller (ILC) for doubly fed 

induction generator to compensate the faults effect 

was described. The suggested technique is designed 

for making the DFIG tolerant to unanticipated faults. 

This technique seems to be an effective choice for 

improve power quality. The main contributions of 

this study are the decrease of ripple and overshoot, 

as well as the enhancement of response time, 

moreover, the ability of the proposed FTC (VC-ILC) 

to compensate the faults. Simulation results and table 

2-3 present the major enhancement of the suggested 

FTC (VC-ILC) compared to the classical VC thus 

the proposed FTC (VC-ILC) is more efficient and 

has a higher likelihood of being utilized in electric 

drives compared to traditional VC controllers. In 

conclusion, the high effectiveness and robustness of 

the suggested approach can be useful for industrial 

implementation where the power quality is a 

significant worry and the operating conditions are 

critical. 
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