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Abstract  

A discrete model is applied to handle the geometrically nonlinear free and forced vibrations of beams 

consisting of several different segments whose mechanical characteristics vary in the length direction and 

contain multiple point masses located at different positions.  The beam is presented by an N degree of freedom 

system (N-Dof).  An approach based on Hamilton's principle and spectral analysis is applied, leading to a 

nonlinear algebraic system.  A change of basis from the displacement basis to the modal basis has been 

performed. The mechanical behavior of the N-Dof system is described in terms of the mass tensor mij, the linear 

stiffness tensor kij, and the nonlinear stiffness tensor bijkl. The nonlinear vibration frequencies as functions of 

the amplitude of the associated vibrations in the free and forced cases are predicted using the single mode 

approach.  Once the formulation is established, several applications are considered in this study. Different 

parameters control the frequency-amplitude dependence curve: the laws that describe the variation of the 

mechanical properties along the beam length, the number of added masses, the magnitude of excitation force, 

and so on.  Comparisons are made to show the reliability and applicability of this model to non-uniform and 

non-homogeneous beams in free and forced cases. 
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LIST OF SYMBOLS 

 

𝐿𝑗-The length of segment j. 

𝑆𝑗(𝑥)-The cross-sectional area of the segment j. 

𝐼𝑗(𝑥) -The squared moment of the segment j. 

𝜌𝑗(𝑥)-The density of the segment j. 

𝐸𝑗(𝑥)-The Young's modulus of the segment j. 

(N-dof)-N degree of freedom. 

L-The length of SAFGB. 

η𝑗-The normalized mass. 

A𝑗-The modulus of the displacement y𝑗of the mass m𝑗  in 

DB, for 𝑗 = 1,… , 𝑁. 

 a𝑗-The modulus of displacement y𝑗 expressed in MB, for 

𝑗 = 1,… ,𝑁. 

𝑛-The number of add masses. 

M𝑖-Magnitude of add masses, 𝑖 = 1,… , 𝑛. 

 X𝑖-The Coordinate of add masses, 𝑖 = 1,… , 𝑛. 

𝐹𝑑-The intensity of distributed force.  

𝐹𝑖 -The harmonic excitation force applied to node i, i =

1, … , N 
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𝜑𝑖𝑟-The ith component of the rth mode shape. 

f𝑖 = 𝐹
𝑑/𝑁-The amplitude of the exciting force in each 

node, 𝑖 = 1,… , 𝑁. 

𝜔Ndof-M
*nl -The normalized nonlinear frequency of the N-dof 

system. 

𝜒- The taper ratio of the beam. 

x𝑟-The local coordinates in the x-axis, for 𝑟 = 1,… , 𝑁 +

2.   

m𝑟- The magnitude of the mass i located at abscissa x𝑟, for 

𝑟 = 1,… , 𝑁. 

𝑆1- The cross-sectional area of the section located at x=0. 

𝐼1-The squared moment of the section located at x=0. 

𝑅 = √𝐼1 𝑆1⁄ -The radius of gyration of the section located 

at x=0 

l𝑖=l=L/(N+1)-The length of the bar i. 

1. INTRODUCTION 

 

In different engineering sectors, such as 

automotive, and civil engineering, etc. Various 

structural components are made of stepped or 
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continuously segmented beams whose physical 

properties vary from one segment to another, either 

in the thickness or in the length directions. This last 

case, is often named axially functional gradient 

beams and has several advantages and a particular 

interest in various applications compared to pure or 

alloyed metals.  Treating linear and non-linear, free 

and forced vibrations of stepped and continuously 

segmented beam structures made of materials with 

axial functional gradient SAFGB and containing 

point masses are rare in the literature, because the 

differential equations describing them are difficult to 

solve due to the changing coefficients in these 

equations. The analytical solution might be 

impossible to obtain in the case of free and forced 

vibrations at large displacement. However, few 

studies that dealt with this kind of problem and used 

various methods. Mao [1] used the Adomian 

Decomposition Method (ADM) to study the free 

vibrations of Euler-Bernoulli beams with multiple 

cross-sectional steps. Salinic et al [2] proposed a new 

non-iterative computational technique called the 

symbolic-numerical method of initial parameters 

(SNMIP) to deal with the free vibrations of 

continuously tapered, stepped, and segmented Euler-

Bernoulli axial functional gradient beams and rods. 

Sınır et al [3] addressed free and forced nonlinear 

vibrations of Euler Bernoulli beams with a non-

uniform cross-section. The studied beams are made 

from axial functional gradient materials. Su et al [4] 

calculated the linear vibration frequencies of multi-

step functional gradient beams and predicted the 

influence of several parameters on these frequencies, 

in this study the theoretical model is formulated 

based on a variation method in conjunction with the 

first-order shear deformation theory. This work 

neglected the effect of mass addition on the large 

displacement dynamic behavior of AFG beams.  

Adri et al  [5] used an analytical approach to 

calculate the linear and nonlinear vibration 

frequencies of beams embedded at two ends and 

carrying masses at different locations. Fakherddine 

et al [6] treated the forced vibrations of 

homogeneous beams carrying various point masses 

at different positions using a semi-analytical 

approach. 

The objective of the present research is to 

develop an adaptable discrete model for the large 

displacement vibrations of SAFGB, subjected to 

distributed excitation forces and containing point 

masses at different locations.  The beam is modeled 

by a discrete mechanical system composed by N 

masses mr, N+2 spiral springs Cr
l and, N+1 linear 

springs kr. These components allow finding the 

expressions of the mass tensor mij, the linear stiffness 

tensor kij and the nonlinear stiffness tensor bijkl of the 

N-dof system modelling the SAFGB.  These tensors’ 

numerical values depend on the laws of variation of 

the mechanical and geometrical properties along the 

beam length.  A discretization is carried out so that 

the tensors related to each segment are found, and 

then an assembly is performed that verifies the 

compatibility conditions.  Due to the discrete nature 

of this model, the distributed force is replaced by 

concentric forces on each node. Its values are 

proportional to the intensity of the applied force and 

the number of N-Dof used in the discretization 

process.  Once the formulation is completed, several 

applications are presented in this study.  The linear 

and non-linear vibration frequencies are calculated 

using the single mode approach, and compared with 

others previously published results, which show the 

applicability of this new model and the validity of 

the discretisation technique carried out in this study. 

Details are presented in what follows. 
 

2. GENERAL FORMULATION  

 

In this study, a presentation is made of an 

extension of a discrete mechanical model based on 

the modal analysis that was presented by Rahmouni, 

Khnaijar et  Benamar [7]–[9] to investigate the free 

and excitation forced nonlinear vibrations of 

inhomogeneous stepped beams carrying point 

masses in various locations.  

 

2.1. Description of the discrete model 

For the first time, a discrete model is used to 

survey the dynamic behavior in the large 

displacements of a stepped and continuously 

segmented beam made of a material with an axial 

functional gradient.  Two types of vibrations, free 

and forced, are treated in this study.  We assume that 

the force Fd is distributed along the SAFGB.  The 

typical beam and its corresponding discrete model 

are presented in Fig 1. It was considered that the 

beam consists of R segments carrying point masses 

at different positions. The length, the cross-sectional 

area, the squared moment, the density and Young's 

modulus of a segment j of the beam are noted 

respectively by, Lj, Sj(x), Ij(x) ρj(x), and Ej(x).   𝐿 =
∑ 𝐿𝑗
𝑅
𝑗=1  is the total length of the beam.  ∑ 𝛽𝑗

𝑅
𝑗=1 = 1 

and 𝛽𝑗 = 𝐿𝑗 𝐿⁄  is the ratio between the length 𝐿𝑗 of 

segment j and the total length L of the beam.  The 

equivalent discrete model of SAFGB is composed of 

N masses whose magnitude mr, for 𝑟 = 1, . . . , 𝑁 

simulate the inertia of the beam.  The SAFGB carry 

n point masses whose magnitude Mi, and position Xi, 

for 𝑖 = 1, . . . , 𝑛.  The bending stiffness of the beam 

is modeled by N+2 spiral springs of stiffness Cr
l for 

𝑟 = 1,… , 𝑁 + 2 . The geometrical nonlinearity, 

produced due to large displacement, is modeled by 

N+1 linear springs of stiffness kr for 𝑟 = 1, . . . , 𝑁 +
1.  The elongation of the linear springs is calculated 

using the Pythagoras theorem [7].  The total mass of 

the beam is distributed over the set of  𝑁 masses.  

This distribution is governed by the cross-sectional 

area’s laws of variations, and the density of the 

segment j. The elements mr, Cr
l and kr are related to 

each other as shown in Fig. 1. The values of these 

elements depend on Young's modulus, density, 

cross-section geometry, and squared moment of 

segment 𝑗. The  values  of  these  characteristics  are  
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Fig. 1. Typical SAFGB and the corresponding discrete model containing various point masses and subjected  

to a distributed force 

governed by linear, parabolic, exponential or 

constant laws. Each mass mr is simulated by a 

vertical harmonic force Fr for 𝑟 = 1, . . , 𝑁  chosen 

according to the nonlinear mode to be excited. 

The displacement of the mass mr is noted by yr in 

displacement basis (DB) and  𝑦̄𝑟 in modal basis 

(MB) for 𝑟 = 1, . . , 𝑁.  The displacement vector is 

then defined by {𝑦} = 𝑦1𝑢⃗ 1. . +𝑦𝑟𝑢⃗ 𝑟 . . . +𝑦𝑁𝑢⃗ 𝑁 

which can also be written as {𝑦} =
𝑦̄1𝜑⃗ 1. . +𝑦̄𝑟𝜑⃗ 𝑟 . . +𝑦̄𝑁𝜑⃗ 𝑁.  {𝑢⃗ 1, . . , 𝑢⃗ 𝑟 , . . , 𝑢⃗ 𝑁} is the DB 

and {𝜑⃗ 1, . . , 𝜑⃗ 𝑟 , . . . , 𝜑⃗ 𝑁} is the MB.  The rth linear 
mode shape of the N-Dof System 𝜑⃗ 𝑟 are denoted 
in DB as 𝜑⃗ 𝑟

𝑇 = {𝜑1𝑟 , . . , 𝜑i𝑟 , . . . , 𝜑𝑁𝑟}  for 𝑟 =
1, . . , 𝑁 .  {𝑦1 . . 𝑦𝑟 . . 𝑦𝑁} = [𝜑]

−1{𝑦̄1. . 𝑦̄𝑟 . . 𝑦̄𝑁}  where 
[𝜑] = [{𝜑𝑖1}, … , {𝜑𝑖𝑟}, … , {𝜑𝑖𝑁}]  is the transition 
matrix from DB to MB [7], [8]. 

The system N-Dof presented in Fig 1 is assumed 

to be subjected to a harmonic excitation force given 

by the following formula [10]: 

( ) ( )cos cos( ) nl nl

Ndof ij Ni i dofjf ω = f ω    

i, j = 1,...,N    

F t t t=
  (1) 

f𝑖 and 𝑓̄𝑖 represent the amplitude of the excitation 

force  F𝑖 applied to the mass m𝑖 expressed  

respectively in DB and MB.  ωNdof is the excitation 

frequency of the discrete system. 

It is considered that the motion of the system is 

harmonic according to the law [7], [8], [11], [12]: 

( ) ( )cos cos

, 1,....,

( ) nl n

oi i

l

Ndof j ij Nd fy A ω = a ω  

   for  i j N     

t t t= 

=

  (2) 

Ai is the modulus of displacement yi expressed in 

DB (or the contribution of normalised vector {𝑢𝑖} of 

DB), and aj is the modulus of displacement yi 

expressed in MB (or contribution of the normalised 

vector {𝜑𝑖}  of MB [7]).  

Using the usual summation convention for the 

repeated indices i, j, k and l, the kinetic, linear and 

nonlinear potential energies of the N-dof system [7], 

[8] modelling the SAFGB shown in Fig 1 can be 

written as: 

( ) ( )

( ) ( )

2
2

2
2

1 1
sin

2 2

1
sin , 1,

2

( ) ( )

( )

i j ij i j ij

i j ij

nl nl

i NDof i NDof

nl nl

NDof i NDof

T y y m A A m t

a a m t i j N

x x

x

= = 

=  =





     

                 (3) 

( )

( )

2

2

1 1
cos

2 2

1
cos , 1,

2

( )

( )

l i j ij i j ij

i j ij

nl

i NDof

nl

i NDof

V y y k A A k t

a a k t i j N

x

x

= = 

=  =

        (4) 

( )

( )

4

4

1 1
cos

2 2

1
cos , , , 1,...,

2

( ) ( )

( )

nl

nl i j k l ijkl i j k l ijkl NDof

nl

i j k l ijkl NDof

i i

i

V y y y y b A A A Ab t

a a a a b t i j k l N

x x

x

= = 

=  =

     

 (5) 

Where 𝑚ij, kij and 𝑏ijkl respectively (𝑚̄𝑖𝑗, 𝑘̄𝑖𝑗and 

𝑏̄𝑖𝑗𝑘𝑙)  are the general terms of the mass tensor, the 

linear tensor and the nonlinear rigidity tensor in DB. 

(respectively in MB) [7]. The relations between the 

expressions of this tensors in DB and MB can be 
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obtained by using the transition matrix [𝜑] defined 

earlier in [7]–[10]. 

sij si tj tm m   =      (6) 

tij si tj sk k=      (7) 

ijkl si tj pk stpqqlb b   =       (8) 

, 1,....,for  i j,k,l,s,t, p,q N     =  

The relation between the magnitude of the 

excitation force in DB and MB can be written as 

[10]: 

si sif Φ f=     (9) 

, 1,....,for  i s N     =   

The general term of mass tensor is given by the 

following relation [11], [12]: 

 ( )( ) , 1,...,ij i i ijm x m x for i j N=  =  (10) 

 
( )( )

( )
1

, 1,...,

i i

ij ij

L x S x
m x

N

for i j N


= 

+

=

  (11) 

𝛿ij is the Kronecker symbol. 
The local coordinates in the x-axis are given by 

xr=(r-1)×l  Fig. 1, for r=1,…,N+2.  l=L/(N+1) is the 

distance between two successive masses. 

If we take into account the n point masses, we 

apply a parameter ηi (normalized mass), which is 

defined as the ratio of the concentric mass’ intensity 

located at the abscissa Xi and the mass of a 

homogeneous and uniform beam (also named 

reference mass) of section S1 and density ρ1. [11] 

(Related to the cross-section located at x=0). 

1 1

i
i

M

L S
 =


    (12) 

If we assume that the mass is located at the rth 

position, the 𝑚𝑖𝑗(𝑥𝑖) is written in this situation as 

follows: 

 
( )

1 1

( )
( )

1

r r

rr r r

L x S x
m x L S

N


= + 

+
  (13) 

The expression of the potential energy stored in 

the N+2 spiral springs of the N-Dof system is given 

by [7], [11]: 

( )
2

2

1 22
1

2 1 0 1

1
2

2

0

N
l

l r r r r

r

N N

V C y y y
l

y y y y

+

− −

=

+ + −

= − +

= = = =

  (14) 

When we use the same steps established in [7], 

we find the 𝑘𝑖𝑗 tensor components: 

( )1 22

1
4

1,...,

l l l

rr r r rk C C C
l

for r N

+ += + +

=

  (15) 

( )( 1) ( 1) 12

2

2,...,

l l

r r r r r rk k C C
l

for r N

− − += = − +

=

  (16) 

( 2) ( 2) 2

1

3,...,

l

r r r r rk k C
l

for r N

− −= =

=

   (17) 

The elementary potential energy dVbr  stored in 

SAFGB, corresponding to an elementary bar in the 

continuous  beam of length 𝑑𝑥 , is given by [7], [11], 

[12]: 

( )
2

1 23

1
( ) ( ) 2

2
l r j r j r r r rdV E x I x y y y

l
− −= − +  (18) 

Identifying the two equations (14) and (18), we 

find the expression of coefficient 𝐶𝑟
𝑙 at the abscise xr 

for the segment j. 

( ) ( )
1,..., 2

j r j rl

r

E x I x
C for r N

l
= = +  (19) 

To present the nonlinear stiffness tensor 

corresponding to SAFGB, we use the expression of 

the energy stored in the N+1 axial spring of stiffness 

ki that models the geometrical nonlinearity due to the 

large displacement of the beam [7]: 

( )
4

1
1

2
1 8

N
r r

nl r

r r

y y
V k

l

+
−

=

−
=   (20) 

We can rewrite equation (20) for a bar located at 

abscissa xr as follows: 

( )
4

1

28

r r

nl r r

r

y y
V k

l

−−
   (21) 

The expression of the stiffness 𝑘𝑟  of the 

longitudinal spiral spring located at abscissa 𝑥𝑟   for 

the segment j, is defined as follows [7], [9]: 

  
( ) ( )

1: 1
j r j r

r

r

E x S x
k for r N

l
= = +   

(22) 

With 𝑙1 = 𝑙2 =,… ,= 𝑙𝑁+1 = 𝑙. 
As mentioned in [7], [8]. Equation (20) gives the 

following expressions of the terms for the nonlinear 

stiffness tensor that presents the axial load induced 

in the longitudinal springs by the nonlinear effect: 

( )12

1
1, ,rrrr r rb k k for r ... N

8l
+= + =  (23) 

1 1 1 1 1 1 1 1 1

1 1 1 2

1
2, ,

rr r r r rr r r r rr

r r r r r

b b b

b k for r ... N
8l

− − − − − − − − −

− − −

= =

= = − =
  (24) 

1 1 1 1

2

1
2, ,

8

rrrr rrr r rr rr r

r

rrrb b b b

k for r ... N
l

− − − −= = =

= − =
  (25) 

1 1 1 1 1 1

1 1 1 1 1 1 2

1

2, ,

rr r r r rr r r r rr

rr r r rr r rrr rr r

b b b

b b b k
8l

for r ... N

− − − − − −

− − − − − −

= =

= = = =

=

 (26) 

The other values of bijkl are equal to zero. 

The discretization process is presented as 

follows. 

 For segment 1, the coordinate is defined in 

interval 0 ≤ 𝑥 ≤ 𝐿1.  The physical and geometrical 

properties namely Young's modulus, density, cross-

sectional area and squared moment are described 

respectively by the functions 𝐸1(𝑥𝑖), 𝜌1(𝑥𝑖), 𝑆1(𝑥𝑖) 
and 𝐼1(𝑥𝑖)   for 𝑖, = 1, . . . , 𝛽1(𝑁 + 1) + 1  . For 

segment 2, they are defined in interval  𝐿1 ≤ 𝑥 ≤
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𝐿1 + 𝐿2.  These parameters are described by 𝐸2(𝑥𝑖), 
𝜌2(𝑥𝑖) , 𝑆2(𝑥𝑖) and 𝐼2(𝑥𝑖)   for 𝑖 = 𝛽1(𝑁 + 1) +
2, . . , 𝛽1(𝑁 + 1) + 𝛽2(𝑁 + 1) + 1.  For segment 3 

they are defined in interval  𝐿1 + 𝐿2 ≤ 𝑥 ≤ 𝐿1 +
𝐿2 + 𝐿3.  These parameters are described by 𝐸3(𝑥𝑖), 
𝜌3(𝑥𝑖) , 𝑆3(𝑥𝑖)  and 𝐼3(𝑥𝑖)   for 𝑖 = 𝛽1(𝑁 + 1) +
𝛽2(𝑁 + 1) + 2, . . , 𝛽1(𝑁 + 1) + 𝛽2(𝑁 + 1) +
𝛽3(𝑁 + 1) + 1  and vice versa .i.e. applying the 

same approach to segment j.  From the expression of 

these physical and geometrical parameters, we can 

find the terms of the tensors for each bar. 

 

2.2. Amplitude equation for the nonlinear 

vibration problem  

2.2.1. General equation  

The nonlinear amplitude equation of the N-Dof 

system modelling the SAFTB considered is first 

established using Hamilton’s principle and spectral 

analysis [5]–[8]:  

 
2 /

0

0( )l nlV V T F dt
 

= + − −  (28) 

Replacing T, 𝑉𝑙 , 𝑉𝑛𝑙  and F in this equation by 

their expressions presented in equations (1) and (3) 

to (5), integrating the time functions and calculating 

the derivatives with respect to the ai’s, we obtain a 

system of nonlinear algebraic equations: 

 
2

i j k ijkr i ir i ir3a a a b +2a k -2a ω m =f

i, j , k, r=1,...,N

r

for

 (29) 

Which can be written in matrix form as: 

( )     ( )    
23

B + K - ω M = f
2

nl

Ndofa a a a         

(30) 
Where [𝑀̄], [𝐾̄], and [𝐵(𝑎)] are respectively the 

mass matrix, the linear stiffness matrix and the 

nonlinear stiffness tensor expressed in the MB and 
{𝑎} is the displacement vector in the MB. 

Equation (29) is a nonlinear equation presenting 

the nonlinear dynamic behaviour in large 

displacement of the system N-Dof modelling the 

SAFGB.  

The expression of the  ωNdof
nl   parameter nonlinear 

frequency can be obtained by pre-multiplying Eq. 

(30) by  {𝑎}𝑇 from the left-hand side  [7], [8], which 

leads to the following equation: 

( )
i j ij i j k l ijkl2

i j ij ij

3
a a k + a a a a b

2ω =
a a m m

nl i
Ndof

i

f

a
−  

 (31) 
 

2.2.2 Single Mode approach (SMA)   

The Single mode approach (SMA) is frequently 

used in the literature [5] and [13] because of the great 

simplification it brings to the theory, and the little 

error it causes in the estimation of amplitude 

dependent nonlinear frequency ωNdof
nl  of the system 

N-Dof.  Applying the SMA to equation (31) leads to: 

2

2 1111 1
1

11 1 11

ω 3
=1

ω 2

nl

Ndof

l

Ndof

b f
a

k a k

 
+ −  

 

  (32) 

In which k11, m11, b1111 and f1 correspond to the 

single mode in the neighbourhood of which the non-

linear effect is examined which corresponds to the 

first mode for the cases considered in this study, 

were  𝜔𝑁𝑑𝑜𝑓
𝑙 = √𝑘̅11 𝑚̅11⁄  is the first linear 

frequency parameter. 

 

3. RESULT AND DISCUSSION  

 

In this section, various numerical applications are 

presented to validate the new approach.  The results 

of linear and nonlinear frequencies are achieved 

from a program realized by MATLAB software. 

 

3.1. Validation of the results for the linear case 

We present firstly the results concerning the 

linear frequencies. In this case, the 
3

2
[𝐵(𝑎)] term is 

not taken into account, which leads to the following 

formula: 

  ( )  
2

K - ω M =0l

Ndofa a        (33) 

The eig function integrated in MATLAB 

software is used to find the linear vibration 

frequencies 𝜔𝑁𝑑𝑜𝑓𝑟
𝑙  for r= 1 to N, corresponding to 

the N vibration modes of the discrete system 

modelling the SAFGB.  

Two numerical applications are presented in this 

study, the first one corresponds to a beam with three 

steps. The second one corresponds to a beam 

composed of two segments continuously attached. 

 

3.1.1. Example 1 

The example shown in [2], corresponds to a beam 

consisting of four segments for rectangular cross-

section. The geometrical characteristics of the 

corresponds beam are: 𝛽1 = 0.25, 𝛽2 = 0.30, 𝛽3 =
0.25  and 𝛽4 = 0.20 . 𝑆2 𝑆1⁄ = 0.8 , 𝑆3 𝑆1⁄ = 0.65 , 

𝑆4 𝑆1⁄ = 0.25, the width of this beam is assumed to 

be constant.  Two types of beams are considered in 

this example, the first one corresponds to a 

homogeneous beam with Young's modulus and mass 

density assumed constant i.e., 𝐸(𝑥) = 𝐸Al  and 

𝜌(𝑥) = 𝜌Al for 0 ≤ 𝑥 ≤ 𝐿 (Material 1).  The second 

beam corresponds to an axial functional gradient 

beam with 𝐸(𝑥) = 𝐸Al(1 + (𝐸Al 𝐸Zr − 1)(𝑥 𝐿⁄ )2⁄ ) 
and 𝜌(𝑥) = 𝜌Al(1 + (𝜌Al 𝜌Zr − 1)(𝑥 𝐿⁄ )2⁄ )  for  

0 ≤ 𝑥 ≤ 𝐿  (Material 2).  It is considered that the 

axial functional gradient material is composed of 

two constituents, zirconia ZrO2 and aluminum Al, 

whose mechanical characteristics are presented in 

Table 1. 

Table 2 presents the first 10 dimensionless linear 

frequencies √𝜔𝑁𝑑𝑜𝑓𝑟
∗𝑙 = √𝜔𝑁𝑑𝑜𝑓𝑟

𝑙 √𝐿4𝑆1𝜌Al 𝐼1𝐸Al⁄  

estimated with N=123 and for the three boundary 

conditions, (Embedded-Embedded) (E-E). 𝐶1
𝑙 =

𝐶𝑁+2
𝑙 = ∞ , (Simply-Supported)  (S-S), 𝐶1

𝑙 =
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𝐶𝑁+2
𝑙 = 0  and (Embedded-Supported) (E-S), 𝐶1

𝑙 =
∞ 𝑎𝑛𝑑 𝐶𝑁+2

𝑙 = 0 . It is already known in the 

literature that the results obtained for the linear case  

by this discrete model are improved by increasing 

the N-Dof [7], [8]. 

From the results presented in Table 2, it can be 

seen that the use of material 2 instead of material 1 

results in a decrease in all frequency values for the 

S-S and E-E boundary conditions. For the C-S 

boundary condition, it can be seen that the 

frequencies related to material 2 are low compared 

to material 1, except for the second frequency where 

the opposite is observed. 

 
Table 1. The values of the young’s modulus and density 

 
Young’s modulus 

(N/m2) 

Density 

(Kg/m3) 

Al (Aluminium) 𝐸Al = 70 × 10
9 𝜌Al = 2702 

Zr (Zirconia) 𝐸𝑍𝑟 = 200 × 10
9 𝐸𝑍𝑟 = 5700 

 

 

Table 2. Comparison of the six dimensionless frequencies with the results given in [2] related the beam 

presented in section 3.3.1

√𝜔𝑁𝑑𝑜𝑓 𝑟
∗𝑙  

 

Material 
 

S-S E-E E-S 

Present 

study 

[2] Present 

study 
[2] Present 

study 
[2] 

√𝜔𝑁𝑑𝑜𝑓1
∗𝑙  

 

1 

 

2.2421 

 

2.24074 

 

3.5447 

 

3.54196 

 

3.0324 

 

3.02686 

2 2.0880 2.08694 3.4076 3.4077 2.99914 3.00028 

√𝜔𝑁𝑑𝑜𝑓2
∗𝑙  

 

1 

 

4.6346 

 

4.63823 

 

5.8188 

 

5.81163 

 

5.4161 

 

5.42184 

2 4.6241 4.62467 5.7280 5.72338 5.4256 5.43323 

√𝜔𝑁𝑑𝑜𝑓3
∗𝑙  

 

1 

 

7.4301 

 

7.43284 

 

8.4859 

 

8.48187 

 

8.1161 

 

8.10836 

2 7.3803 7.38797 8.3909 8.39335 8.0493 8.04824 

√𝜔𝑁𝑑𝑜𝑓4
∗𝑙  

 

1 

 

9.9365 

 

------- 

 

11.3432 

 

------- 

 

10.3846 

 

------- 

2 9.6956 ------- 11.1432 ------ 10.0815 ------ 

√𝜔𝑁𝑑𝑜𝑓5
∗𝑙  

 

1 

 

11.8066 

 

------- 

 

13.1543 

 

------- 

 

12.4916 

 

------- 

2 11.5999 ------- 12.8529 ------ 12.3061 ------ 

√𝜔𝑁𝑑𝑜𝑓6
∗𝑙  

 

1 

 

14.6163 

 

------- 

 

15.7312 

 

------- 

 

15.3828 

 

------- 

2 14.4182 ------- 15.4894 ------ 15.1504 ------ 

 
Table 3. Comparison of the six dimensionless frequencies  related the beam presented in section 3.3.2 with the results 

given in [2]

√𝜔𝑁𝑑𝑜𝑓 𝑟
∗𝑙  

 

Material 
 

𝜒 = 0.1 

𝛽1 = 0.2 

𝜒 = 0.1 

 𝛽1 = 0.4 

𝜒 = 0.2 

 𝛽1 = 0.2 

𝜒 = 0.3 

 𝛽1 = 0.2 

𝜒 = 0.4 

 𝛽1 = 0.4 

Present 

study 

[2] Present 

study 
[2] Present 

study 
[2] Present 

study 

Present 

study 

√𝜔𝑁𝑑𝑜𝑓1
∗𝑙  

 

1 

 

4.1654 

 

4.16752 

 

3.2999 

 

3.29393 

 

4.0445 

 

4.04916 

 

3.8675 

 

3.3932 

2 4.2706 4.27377 3.3864 3.38057 4.1185 4.11449 3.9022 3.4082 

√𝜔𝑁𝑑𝑜𝑓2
∗𝑙  

 

1 

 

11.8038 

 

11.7968 

 

9.1456 

 

9.14226 

 

9.3114 

 

9.31172 

 

8.2888 

 

7.3329 

2 11.6069 11.6037 9.1022 9.10021 9.1525 9.15617 8.1503 7.2296 

√𝜔𝑁𝑑𝑜𝑓3
∗𝑙  

 

1 

 

11.6831 

 

16.6743 

 

14.6747 

 

14.6626 

 

13.8233 

 

13.8225 

 

12.4168 

 

10.9214 

2 16.4580 16.4543 14.4562 14.4473 13.6117 13.6158 12.2198 10.7482 

√𝜔𝑁𝑑𝑜𝑓4
∗𝑙  

 

1 

 

21.8975 

 

------- 

 

18.6625 

 

------- 

 

18.2714 

 

------- 

 

16.5012 

 

14.5917 

2 21.5979 ------- 18.3728 ------- 17.993 ------- 16.2520 14.3607 

√𝜔𝑁𝑑𝑜𝑓5
∗𝑙  

 

1 

 

27.3501 

 

------- 

 

23.3775 

 

------- 

 

22.7516 

 

------- 

 

20.6555 

 

18.1953 

2 27.0055 ------- 23.0908 ------- 22.4166 ------- 20.2609 17.9183 

√𝜔𝑁𝑑𝑜𝑓6
∗𝑙  

 

1 

 

32.6299 

 

------- 

 

27.8282 

 

------- 

 

27.2940 

 

------- 

 

24.6575 

 

21.8393 

2 32.2342 ------- 27.4473 ------- 26.9003 ------- 24.2937 21.5032 
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3.1.2. Example 2 

In this example, a simply supported beam formed 

by two continuously attached elements is 

considered. The width is supposed to be constant, 

𝑏1(𝑥) = 𝑏2(𝑥) = 𝑏1  𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝐿  and the 

thickness is assumed to be variable according to the 

following laws: 

1 1 1( ) 0h x h with x L=     

For the segment 1 

2 1 1 1

1

1
( ) 1 ( )

(1 )
h x h x L with L x L

L

 −
= + −    

 − 

  For the segment 2 

 is the taper ratio of the thickness, and 𝛽1 is the 

length ratio related to the first segment. 

Table 3 shows a comparison of the results of the 

frequencies of the considered beam with the results 

of [2] for different values of   and 𝛽1 according to 

material 1  and 2.  It can be seen that the agreement 

with [2] is excellent.  

The results of the dimensional frequencies 

related to the two examples presented above are in a 

good agreement with those published in [2] by 

increasing the value of N-Dof . 

 

3.2. Validation of results for the free nonlinear 

case 

The example presented in this section is the one 

examined in [14]. It is a beam consisting of two 

homogeneous segments continuously attached to 

each other.  Two configurations are possible, the first 

one concerns a beam of a constant width and a 

variable thickness that is named beam A.  The 

second one corresponds to a beam of a constant 

thickness and a variable width, named beam B. 

The area of the cross-section and the squared 

moment of each segment are given by the following 

relationships: 

{
 
 

 
 𝑆1(𝑥) = 𝑆0 (1 + 𝜒 (

2𝑥

𝐿
))

𝐼1(𝑥) = 𝐼0 (1 + 𝜒 (
2𝑥

𝐿
))

𝑛 − 𝛽1𝐿 ≤ 𝑥 ≤ 0 

For the segment 1 

{
 
 

 
 𝑆2(𝑥) = 𝑆0 (1 − 𝜒 (

2𝑥

𝐿
))

𝐼2(𝑥) = 𝐼0 (1 − 𝜒(
2𝑥

𝐿
))

𝑛 0 ≤ 𝑥 ≤ 𝛽1𝐿 

For the segment 2 

 

With 𝜒 being the taper ratio of the beam, 𝛽1is the 

ratio of the lengths.  n=3   corresponds to Beam A, 

and n=1 corresponds to Beam B.  The two segments 

have the same length i.e.  𝛽1 = 0.5. 

The results are illustrated in the form of 

backbone curves obtained by plot equation (32) for 

two boundary condition, E-E and S-S and for 

different values of N-Dof.  In these curves, the 

abscissa axis presents the ratio between the first 

nonlinear and linear dimensionless frequencies 

𝜔𝑁𝑑𝑜𝑓
∗𝑛𝑙 /𝜔𝑁𝑑𝑜𝑓

∗𝑙 and the ordinate axis presents the 

maximum nondimensional amplitude 𝐴𝑚𝑎𝑥
∗  defined 

by 𝐴𝑚𝑎𝑥
∗ = 𝐴𝑚𝑎𝑥/𝑅  with 𝑅 = √𝐼1 𝑆1⁄  being the 

radius of gyration of the section located at x=0. in 

this example we take fi=0. 

Fig 2-a;2-b and 3 show a comparison of the 

backbone curves of the present study with that 

presented in [14] respectively for SS and EE 

boundary conditions and for different values of N-

Dof. 

 
Fig. 2-a. Comparison of the backbone curves   for 

S-S beam A with the results published in [14] for 

𝜒 = 0.4 

 
Fig. 2-b. Comparison of the backbone curves for 

S-S beam B with the results published in [14] for 

𝜒 = 0.4 

 

It can be seen that the convergence obtained by 

the discrete model with 11, 19, 29, 33 and 45 N-Dof 

is practically stable, i.e., almost independent of the 

number of N-Dof.  It can be concluded that it is not 

necessary to use a higher number of N-Dof [7], since 

for N=29 for example the curves obtained of the 

present study converge well to the published results 

[14] for beam A, and B and for the two boundary 

conditions E-E and S-S. 

It is clear from Fig 3 that as the taper ratio𝜒 is 

increased, the nonlinearity becomes more significant 

and the expected hardening effect is observed. 
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It should be noted that in the following we keep 

the number of N-dof at the value N=29, it allows to 

have good results and a minimum time of execution 

for MATLAB. 

 
Fig. 3. Comparison of the backbone curves for  

E-E beam A with the results published in [14]  for 

various values of  𝜒 

 

3.3. Results for the forced nonlinear case 

(homogeneous beam) 

In this section, we present the results of the non-

linear vibration frequencies and the corresponding 

maximum amplitude in the forced case.  The force 

distribution was chosen to stimulate the first mode, 

which is considered predominant in this study.  The 

values of the excitation amplitude fi of each force 

𝐹𝑖  =  𝑓𝑖cos (𝜔𝑁𝑑𝑜𝑓
𝑛𝑙 𝑡) in DB are given by 𝑓𝑖 = 𝜑𝑖1𝑓, 

[10].  𝜑𝑖1 being the ith component of the first mode 

shape, and 𝑓 is the amplitude of the exciting force 

which is defined as the total force distributed over 

the SAFGB divided by the number of masses N-Dof 

chosen in the discretization process i.e. 𝑓 = 𝐹𝑑 𝑁⁄ . 

Fig 4 shows the plot of equation (32), which 

present the response in non-linear and linear 

frequency ratio as a function of the maximum 

dimensionless amplitude in the vicinity of the first 

mode, which is related to the beam presented in 

section 3.2 with a taper ratio equal to 𝜒 = 0.4.  The 

beam considered is assumed to be excited by a 

distributed force Fd=100. 

The non-linear hardening effect and the multi-

value zones in which the jump phenomenon can 

arise, can be more clearly identified. 

Fig 5 shows the non-linear frequency response 

curves for beam A for 𝜒 = 0.4  that is excited by 

different values of the force distributed along the 

length of the beam. It can be observed that the 

variation of the exciting force’s intensity affects the 

curve. 

Figs 6 and 7 respectively show the effect of the 

geometric non-linearity as a function of the taper 

ratio χ of beam A and B for Fd=800.  It can be seen 

that the hardening effect increases with χ for beam A 

and is approximately stable for beam B. 

 
Fig. 4. Linear and nonlinear frequency response 

for E-E beam A with 𝜒 = 0.4 and Fd=100 

 
Fig. 5.  Comparison of the nonlinear frequency’s 

response for E-E beam A with 𝜒 = 0.4 for 

different values of Fd 

 
Fig. 6. Comparison of the nonlinear frequency’s 

response for E-E beam A for different values of  𝜒 

and Fd=800 

 

Fig 8 shows the effect of the boundary conditions 

on the frequency response of beam A for χ=0.6 and 

for Fd=500.  It can be seen from Fig 8 that the 

hardening effect is significant for the S-S boundary 

conditions compared to the E-E boundary 

conditions. 
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Fig. 7. Nonlinear frequency response for E-E 

 Beam B for different values of  𝜒 and for Fd=800 

 

 
Fig. 8. The effect of boundary conditions on the 

frequency response related to beam A for 𝜒 = 0.6 

and for Fd=500 

 

3.4. Results for the nonhomogeneous beam in 

free and forced case 

Considering two-step beam of length L=1m 

according to material 2 presented in section 3.1.1.  

The beam is subjected to a distributed force of 

intensity Fd.  The geometrical characteristics are 

given by: 𝛽1 = 0.375, 𝛽2 = 0.25 and 𝛽3 = 0.375 . 

𝑆2 𝑆1⁄ = 0.6 , 𝑆3 𝑆1⁄ = 1 .  Fig 9 and 10 show 

respectively the nonlinear frequency response for E-

E and S-S boundary condition, and for different 

values of excitation Fd.  Fig 11 shows the nonlinear 

frequency response of the S-S beam for different 

values of 𝛽2 and for Fd=500.  In this example, if we 

take 𝛽2 as a controlling parameter, the values of 𝛽1 

and 𝛽3  are calculated as follows: 𝛽1 = 𝛽3 = (1 −
𝛽2)/2. 

For Figs 9, 10 and 11, we can see that the non-

linearity is always of the hardening type. When we 

change the value of the force distributed on the 

beam, the frequency response also changes.  We can 

clearly see on the right side of Fig 11 that there is a 

jump phenomenon, and an increase of the 𝛽2 

coefficient leads to an increase of the frequency for 

a fixed value of the amplitude.   

 
Fig. 9. Comparison of nonlinear frequency 

response for E-E beam, with  𝛽2 = 0.25  and for 

different values of Fd 

 
Fig. 10. Comparison of nonlinear frequency 

response for S-S beam, for 𝛽2 = 0.25 and   for 

different values of Fd 

 
Fig. 11. The effect of the change in  𝛽2 on the 

frequency response for S-S boundary condition 

and for Fd=500 

 

3.5. Results for the nonhomogeneous beam in 

free and forced case containing various point 

masses 

In order to validate the results of the present 

study for the Stepped AFG beams containing point 

masses, a comparison was performed with the results 

published in [15] for a homogeneous and  uniform 

beam carrying  3 point  masses respectively at 𝑋𝑖 =
(𝑋1 = 0.2; 𝑋2 = 0.5; 𝑋3 = 0.7) and magnitude 𝜂𝑖 =
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(𝜂1 = 10; 𝜂2 = 10; 𝜂3 = 10) .  The results are 

presented as backbone curve given in Fig 12 whose 

abscissa axis matches the normalized nonlinear 

frequency 𝜔Ndof-M
*nl = 𝜔Ndof

nl 𝐿2√𝜌𝐴𝑙𝑆1/𝐼1𝐸𝐴𝑙  and the 

ordinate axis corresponds to the normalized 

maximum amplitude 𝐴𝑚𝑎𝑥
∗  .   𝜌𝐴𝑙 , 𝑆1, 𝐼1  and  𝐸𝐴𝑙 are 

the geometrical and physical characteristics of the 

uniform beam.  

Fig 13 illustrates the backbone curve for the 

SAFGB presented in section 3.4 for 𝛽2 = 0.2 and 

corresponds to material 2, carrying 2-point masses 

respectively at 𝑋𝑖 = (𝑋1 = 0.1; 𝑋2 = 0.7)  and 

magnitude  𝜂𝑖 = (𝜂1 = 1; 𝜂2 = 1).  
It can be seen that the effect of non-linearity 

increases or decreases by varying the position, the 

number and the magnitude of the masses added to 

the beam and the nature of the material used. 

Fig 14 illustrates the forced frequency response 

related to the beam presented in section 3.4 

corresponds to material 2 for 𝛽2 = 0.2 and carrying 

two-point masses at 𝑋𝑖 = (𝑋1 = 0.1; 𝑋2 = 0.7) and 

magnitude  𝜂𝑖 = (𝜂1 = 10; 𝜂2 = 10). 

 
Fig. 12. Comparison of nonlinear frequency 

response  with the results published in [15] for the 

beam containing point masses 

 
Fig. 13. The effect of the Number of point masses 

and the nature of beam on nonlinear frequency 

response for S-S boundary condition 

 

4. CONCLUSION 

 

In this work, we have examined the free and 

forced vibration at large amplitude of SAFGB 

containing added point masses at different 

locations. The results found of the dimensionless 

frequencies in the linear and nonlinear cases using 

the single mode approach are in good agreement 

with other previously published data, which shows 

the reliability of this new model.  These results of 

the nonlinear dimensionless frequencies for beams 

containing point masses have been first compared 

to other results for the homogeneous beam. For the 

SAFGB, no previous results were found in 

literature.  This model allows the prediction of large 

amplitude vibration frequencies for any types of 

Stepped beam carrying point masses, and for any 

combination of functional gradient materials. 

 
Fig. 14. The effect of the values of Fd on nonlinear 

frequency response for S-S boundary condition 
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