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Abstract 

The common damage in engineering structures, especially in functionally graded materials, such as failure 
resulting from fiber breaking or cracking in the matrix or deboning between fibers and matrix, as well as the 
delamination between the composite material plies and between its layers, may be due to thermal effects, 
vibration, load concentration as a result of stress and strain for provides information’s about structural health 
monitoring. Virtual energy method such as Hamilton's was used to investigate the effect of the design 
parameters such as side to thickness and modular as well as material graduation index ratio on the stress-strain 
relationships, displacement, resultants of stresses, and resultants of mid plane strain. The analysis and 
simulation of the FGM shells is done in this paper utilizing MATLAB19 code and ABAQUS20 programs. The 
distribution of characteristics across shell thickness had also been determined using a power law. Normal stress 
was varied gradually from 5.74 MPa to 9.55 MPa with material index (n) from 0 to 10 respectively, while 
shear stress varied from 4.2 to 8.23 MPa for the same value of (n). The strain percent increased slightly from 
0.00059 to 0.0012 with displacement 0.22 and 1.2 respectively for the same value of (n). 

Keyword: health monitoring, FG shell, power and sigmoidal law, virtual energy method, thickness ratio. 

1. INTRODUCTION 

Many types of damage occur in gradual multi-
layers material, as a result of the different properties 
of these material in each layer that varied through the 
shell thickness that help to understand the structural 
health monitoring of shell structural. Functionally 
graded (FGM) or multi-layers’ composite are a type 
of composite that is inhomogeneous and has 
mechanical characteristics that change gradually and 
still through one side to the other. FGM have several 
benefits over traditional materials, including 
excellent endurance to significant temperature 
gradients, reduced stress concentration, greater 
bonding strength, and etc. As a result, FGM have 
been widely used in a variety of applications, 
particularly when considerable temperature 
differences exist. Moreover, FGM are widely being 
employed in a variety of applications, including the 
aviation industry, reactor vessels, space vehicles, 
electronics, automobiles optics, biomedical 
engineering and mechanical engineering [1]. Due to 
material mismatch, stress singularities in such multi-
layers composites can develop at the interface 
between two dissimilar metals. The significantly 
clear dissimilar in coefficients of thermal properties 
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will create increase residual strains, especially in a 
high-temperature condition, such as the engine 
motor of an air vehicle. As a consequence, the 
composite can experience cracking or debonding. As 
a result, the principle of graded shell was established 
to meet the need conditions of the high-temperature 
while also eliminating singularities of stress [2]. 
Multi-phase composite can also create by altering 
the components of different materials in a specified 
volume parameter of an essential material. The 
interfaces between two materials vanish due to the 
continual change in properties of a multi-phase 
material, but the properties of two or more separate 
materials of the composite are conserved. As a 
result, the stresses singularity at the interfaces of a 
composite can be reduced, improving strength of 
bonding. Many studies are trying to improve know 
order to provide designers with the best possible 
profile. The change of material characteristics of 
FGM are often described using a power-law 
function. The concentrations of strain and stress 
develop in inter-laminar where the material is 
continuously but quickly varying in exponential and 
power functions [3]. Therefore, a sigmoid behavior, 
consist of twice functions of power law to establish 
a created volume parameter, and demonstrated that 
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using a sigmoid function may lower the factors of 
stress intensity for a fractured structure greatly has 
been suggested by Jin [4]. The mathematical 
formulation using the theory of large deformation, 
Karman for the shell and plates with normal stresses 
[5]. The structural responses of ceramic-metal 
composite explored by using a finite element theory 
which provides for shear stresses [6]. A numerical 
solution model based on the conventional theory of 
laminated composite was used to investigate the 
vibration controlling of multi-layers plates [7]. An 
elastic branching of plate buckling was investigated 
with in-plane compressed load employing a combine 
both structural and micromechanical methods [8]. 
The meshless collocation technique and the TSDT 
was used to analyze the static deformations of FGM 
plate [9].  The transient response of plates and shells 
has been investigated using radial basis functions 
and FSDT [10]. Several beam theories (Reddy-
Bickford, Timoshenko and Euler-Bernoulli) was 
used to examine the elasto-static responses of FG 
plates [11] . Mesh-free moving Kriging (MK) and 
First Shear Deformation was used to investigate the 
vibration with bending in multi-layers composite 
without the use of factors for shear correction [12]. 
A three-dimensional iso-geometric analysis was 
used to examine the mechanical behaviors of 
laminated plates[13]. The formulation within 
thermal elasticity approach was utilized to 
investigate the flexural response of FG plates with 
thermal load [14]. A theoretical framework with 
finite element models based on the implementation 
graded plate theory's 3rd  shear deformation was 
developed to examine the buckling behavior of these 
structures [15]. A numerical solution was applied to 
explore the free vibration of power distributed over 
length and thickness of the beam [16-17]. For 
nonlinear free flexural vibrations, eight-node 
rectangular elements were used [18]. The in-plane 
shear stress, direct stress, displacement and 
transverse stress of a simply supported rectangular 
shell are examined [19]. The arrangement of fibers 
reinforced polymeric material in automobile 
composite bumper has been analyzed [20]. Levy 
type approach with theory of first shear deformation 
was utilized to examine the response of buckling 
load with cross-ply composite shallow shells [21]. 
The characteristics of a composite material 
composed of resin strengthened with wasted fiber of 
glass reinforced pipe (GRP) [22]. 

The present work focused on the influence of the 
design constraints such as length to thickness and 
modular as well as material graduation index ratio on 
the stress-strain analysis, displacement of a 
functionally graded shell to detect the weakest 
regions in those engineering structures and to 
strength and support these regions in order to ensure 
the structural health monitoring of shell structural. 

 
 

2. MATHEMATICAL MODELING 
 

Material properties that are distinct along the 
formulations of the power law P is different by the 
thickness of the plate [23]: 

 𝑃(𝑧) = (𝑃௧ − 𝑃௕)𝑉 + 𝑃௕ ,   𝑉 = ቀ
௭

௛
+

ଵ

ଶ
ቁ
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            (1) 

Where Pb and Pt denote the properties of the bottom 
and top surfaces, V represent the volume fraction, h 
shell thickness, z distance from base and n denotes 
the material variance profile through the thickness, 
where n equal to zero for entirely ceramic plates. The 
direct stresses throughout the direction of thickness 
may be omitted since the thickness is estimated to be 
in the limit of 1/20 to 1/100 of its length [20].  
In multi-layer plates, the fundamental equations of 
motion and finite element models created for 
classical and First-order theory are appropriate. The 
plate stiffness were assigned by [24]: 
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for ceramic (c) and metal (m) and modulus, the 
coefficients of thermal effect as well as the elastic Qij 
coefficients, vary with plate thickness [25]. 

In addition, the energies can be illustrated as 
[20]:  
𝑈௘ = ∭ 𝜎௜௝  𝜀௜௝ 𝛿 𝑑𝑥 𝑑𝑦 𝑑𝑧                                     (8) 

𝑇௘ =
ଵ

ଶ
∬ 𝜌 ℎ 𝑤ଶ  𝑑𝑥 𝑑𝑦                                           (9) 

The minimal potential and kinetic energy 
concept was used to create mass and stiffness [26]: 

[𝐾௘] = ∫[𝐵]்     [𝐷]       [𝐵] 𝑑v                                     (10) 
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and 
[𝑀௘] = ∫[𝑁] ்    [𝜌]     [𝑁] 𝑑v                                      (12) 

The equation of motion calculated as [27]:  

∫ (𝑈௘ −   𝑇௘ +    𝑊௘)
௧మ

௧భ
   𝑑𝑡 = 0                                    

(13) 
The stress-strain relationship: 
𝜎 = 𝐶𝜀          (14)          
The multi-layers materials may be represented 

using only 21 constants [28]. 
The constants Q may be represented in terms of 

engineering coefficient and the relations of stress-
strain are given by [29]: 
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3. NUMERICAL SOLUTION  
 
Finite element method was used to evaluate main 

equations in this section of the study. Here, a finite 
element with a conventional discretization method is 
employed to get numerical results.   Partition the 
complete domain into N equal-length components. 
The issue is turned into N algebraic equations once 
FEM is used. 

The FGM characteristics can change with 
direction of thickness, and even the model will 
involve of multiple layers to provide this properties 
difference as illustrated in tables (1-2) and figure (1). 
The characteristics are assessed from bottom 
utilizing the different rules for volume distribution . 
The study and simulation of multi-phase composite 
shell is accomplished in this work utilizing the 
ABAQUS program. In the modelling of gradient 
materials, ABAQUS suggests adding additional 
elements to choose from them. The mechanical loads 
were applied to the FGM characteristics on a square 
shell. 

 
Table 1. FG properties of layers. 

 

Table 2. Orientation angles of FG layers. 

 

 
Fig. 1. Thickness variation in each layer [30]. 

The simply supported edges conditions, as 
illustrated in figure 2, that is under a uniform 
pressure. 

 
Fig. 2. Rectangular shell dimensions. 

 
4. RESULTS AND DISCUSSIONS 

 
Consider a rectangular elastic plate or shell, the 

coordinates x and y are determined at the thick of 
shell's, while the third axis (z), which commenced in 
the shell central surface is actually in thickness. Top 
and bottom faces have separate properties as elastic 
modulus, lateral to longitudinal deformation.  

Figures (3) and (4) demonstrate the two power 
law functions (Power and sigmoidal law). 

 

Fig. 3. Power law function (P-FGM). 

 
Fig. 4. Sigmoidal law function (S-FGM). 

Table 3 shows the stress values of a power 
function. With modular ratio 2 as illustrated, when 
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the shell rigidity increases, the stress increases 
because as material changes from metal matrix to 
rich ceramics. 

Table. 3. Effect of power functionally graded shell on 
structural responses (stresses and displacement). 

Mat. grad. 
index (n) 

Stress 
(MPa) 

Shear xy 
(MPa) 

Strain % 
Disp. 
(mm) 

0 (metal) 5.74 4.2 0.00059 0.22 
0.2 6.12 4.83 0.00062 0.25 
0.5 6.65 5.25 0.00066 0.292 
1 7.28 5.8 0.00071 0.315 
2 8.2 6.62 0.00075 0.58 
5 8.63 7.11 0.00085 0.72 
8 9.24 7.32 0.001 0.92 

10 9.55 8.23 0.0012 1.2 

Many researches have followed the contexts of 
modifying the contents of polymeric recipes to 
improve mechanical, physical and chemical 
properties to suit various engineering applications 
and achieve the desired work goals [31-32]. 

5. STATIC STRUCTURAL ANALYSIS 
     

The meshing and element shape of square shell 
was illustrated in figure (5), in addition to applied 
loading as shown in figure (6). As even the power 
index increases, so would the magnitude of 
deflection. Normal and shear deformation may have 
the effect of increasing deflection, as predicted. The 
variations in deformation amounts indicated by the 
present model are considerable when the thickness 
ratios is small. 

 
Fig. 5. Meshing type. 

 
Fig. 6. Loading distribution with boundary conditions. 

 
Figure 7 illustrates the change of the stresses 

and displacement (structural responses) values with 
material graduation exponents at various function 
distributions. As showed, different functions result 
in various behaviors when the material exponent is 
increased. When the material graduation exponent is 
increased with a power and symmetric power with a 
metal core. In the case of sigmoid function, the stress  
rises is minimal in the fluctuation of graduation 

exponent. Therefore, as the material parameter is 
increased, the symmetric power with such a 
ceramics core, as well as the stress, decreases 
significantly. This tendency is exhibited as the 
amount of ceramics component with material 
exponent’s decreases. 

 
Fig. 7. Power FG shell with structural responses. 

Some research has shown the sensitivity of 
polymeric formulations to several properties such as 
tensile, hardness and compressive property, in 
addition to withstanding under high temperature 
conditions [33-34]. 

The contour distribution of normal stresses in 
(σ1), (σ2) direction, shear stress (σ12), Von Misses, 
Tresca stresses and displacement for different length 
to thickness ratio (L/t =10 and 50) with uniform 
distribution loading for P-FGM were shown in 
figures (8) to (19). The geometrical specifications 
and material characteristics was employed in the 
present work. Model only one quarter of the domain 
using a uniform mesh and the biaxial symmetric. 

Because Von Misses stress is associated towards 
the bending moment, which is highest at this 
support, the largest value for stress was observed 
there. Between the present and reported results, there 
is a strong agreement. The results show that the 
existing formulation behaves very well in order to 
improve accuracy. 

 

 
Fig. 8. Normal stress (σ1) distribution for (L/t=10). 

 

Fig. 9. Normal stress (σ2) distribution for (L/t=10). 
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Fig. 10. Shear stress (σ12) distribution for (L/t=10). 

 
Fig. 11. Von Misses stress distribution for (L/t=10). 

 
Fig. 12. Tresca stress distribution for (L/t=10). 

 
Fig. 13. Displacement distribution for (L/t=10). 

 
Fig. 14. Normal stress (σ1) distribution for (L/t=50). 

 
Fig. 15. Normal stress (σ2) distribution for (L/t=50). 

 
Fig. 16. Shear stress (σ12) distribution for (L/t=10). 

 
Fig. 17. Von Misses stress distribution for (L/t=50). 

 
Fig. 18. Tresca stress distribution for (L/t=50). 

 
Fig. 19. Displacement distribution for (L/t=50). 

The potential energy stored in a structure is 
known as strain energy, also known as deformation 
energy. The work performed by externally applied 
load is converted to elastic strain energy, which is 
stored in the material during the deformation 
process. When the external load and deformation are 
gradually reduced, the structure will release a 
portion from its energy and work, which is known as 
elastic deformation energy. 

Several studies concentrated on the production 
technique of composite with various attributes as 
well as engineering disciplines understand the 
mechanical characteristics of all these components 
and enhance their characteristics [20-23]. To 
enhance different applications, the current study 
intends to employ novel reinforcement materials 
with different layer arrangements. 

 
6. CONCLUSIONS  

The following are some of the results that may 
be derived from this investigation: 
1. The present work introduced the effectiveness 

of a number of failure theories such as Von-
Misses and Tresca in enhancing information 
about structural health monitoring of shell 
structural. 

2. The structural analysis of functionally gradient 
structures, which is based on stress and strain 
analysis, can predict the emergence of regions 
where damage occurs, which are considered 
regions of failure in the future. 

3. When a multi-layers under a transverse loading, 
the bottom part of a shell is subjected to much 
higher stress than the top part; as a result, it is 
critical to construct the multi-phase composite 
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with a higher elastic modulus at base to resist 
fracture . 

4.  The sigmoidal function offers exceptional in 
terms of stress intensity. For bending stress and 
strain, for both mathematical, also the numerical 
model presented considerable and accurate 
finding. 

5. The elastic ratio has same influence (increasing) 
on the stresses and displacement for any 
material distribution function, according to the 
results. 

6. It was demonstrated that by modifying the core 
properties, stress distributions at the interface 
between both the face panels and core may be 
reduced. 
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