
Article citation info:
Kerboua A, Kelaiaia R. Recurrent neural network optimization for wind turbine condition prognosis. Diagnostyka. 2022;23(3):2022301.
https://doi.org/10.29354/diag/151608

1

1

DIAGNOSTYKA, 2022, Vol. 23, No. 3
e-ISSN 2449-5220

DOI: 10.29354/diag/151608

RECURRENT NEURAL NETWORK OPTIMIZATION FOR WIND TURBINE

CONDITION PROGNOSIS

Adlen KERBOUA 1, * , Ridha KELAIAIA 2

1 Faculty of Technology, Université 20 août 1955-Skikda, Algeria
2 LGMM Laboratory, Faculty of Technology, Université 20 Août 1955-Skikda, Algeria

*Corresponding author, e-mail: ad.kerboua@univ-skikda.dz

Abstract

This research focuses on employing Recurrent Neural Networks (RNN) to prognosis a wind turbine

operation’s health from collected vibration time series data, by using several memory cell variations, including

Long Short Time Memory (LSTM), Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), which are

integrated into various architectures. We tune the training hyperparameters as well as the adapted depth and

recurrent cell number of the proposed networks to obtain the most accurate predictions. Tuning those

parameters is a hard task and depends widely on the experience of the designer. This can be resolved by

integrating the training process in a Bayesian optimization loop where the loss is considered as the objective

function to minimize. The obtained results show the effectiveness of the proposed method, which generates

more accurate recurrent models with a more accurate prognosis of the operating state of the wind turbine than

those generated using trivial training parameters.

Keywords: forecasting, recurrent networks, optimization, hyperparameters, loss.

1. INTRODUCTION AND RELATED WORK

Due to its efficiency, artificial intelligence is

becoming a key tool in the development of numerous

industries, particularly in the manufacturing industry

[1, 2], where several issues are open. Recently, time

series have become a general subject of tremendous

practical interest. because it allows us to deduce the

future values of a series from its past values with a

margin of error. Numerous successful applications in

several domains, such as engineering [3, 4] and

manufacturing, energy production and management

[5, 6], and other fields, have been documented in the

appropriate literature. The use of deep learning tools

for forecasting time series data trends is relatively

recent, and continues to attract the attention of the

scientific community in different fields of

technology.

Several frameworks are reported in the literature

to resolve this issue. For instance, wind energy [7],

which is among the sources of energy that see the

fastest growth in the world. Nevertheless, the failure

to detect the breakdown of turbine parts can be

exceptionally exorbitant [8]. Consequently, defining

and building models for the predictive maintenance

of wind turbines [9] is a crucial task. It is noted that

preventive maintenance can be done at regular

intervals to prevent common problems. In this

context, the authors of [10] employed two different

methodologies using Nonlinear Auto-Regressive

© 2022 by the Authors. Licensee Polish Society of Technical Diagnostics (Warsow. Poland). This article is an open

access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
http://creativecommons.org/licenses/by/4.0/).

eXogenous input (NARX) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) to estimate the

health of a wind turbine gearbox using vibration

trend index. The experimentation was conducted on

two datasets and demonstrated that the two proposed

prediction methods perform well at estimating the

fluctuations of the monitoring indices.

The authors proposed a new method based on

deep feature modelling and a LSTM neural network

for predicting the remaining useful life of rolling

bearings in [11]. They carried out experiments using

IEEE PHM Challenge 2012 data sets. The obtained

results demonstrate the importance of the suggested

method's performance improvement in both

prediction accuracy and numerical stability. In the

same context, Liu ZH et al. [12] proposed an

approach that combines elastic net with LSTM. The

E-LSTM algorithm is made up of an elastic mesh and

LSTM, utilizing the LSTM to anticipate the

remaining useful life using temporal-spatial

correlation. In their work [13], the researchers

proposed a Convolutional Neural Network or CNN-

LSTM model based on an attention mechanism for

wind turbine fault prediction. The model is trained

using the Semantic Sensor Network (SSN) ontology-

annotated icing fault and yaw fault datasets of wind

turbines. The trained model can accurately anticipate

the probability of a wind turbine fault. The

experimental results, according to the authors,

suggest that the proposed model is more effective

https://doi.org/10.29354/diag/151608
mailto:ad.kerboua@univ-skikda.dz
https://orcid.org/0000-0003-3078-462X

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

2

and superior than some of the current mainstream

models, based on real wind turbine test data.

The authors in [14] proposed an end-to-end fault

diagnosis approach. They employ similar temporal

sequences as input to a Convolutional LSTM

(CLSTM) to detect the bearing defect with high

accuracy in a small duration of time. Authors noticed

that the method can achieve good accuracy without

performing pre-processing. The fault diagnosis

method's effectiveness and feasibility are

demonstrated by comparing the results to those of

existing intelligent fault detection systems using

benchmark experimental vibration datasets. The

authors [15] employed the LSTM to anticipate traffic

flow using traffic sensor data that was available as a

big data set. Then, they compared the results

obtained by LSTM to the traditional statistical

methods of traffic prediction. It is found that the

LSTM-based model performs better. All of these

studies train networks, including basic versions of

LSTM-like memory cells, and they try to improve

the performance of prediction by varying the

hyperparameters only.

Even if the efficiency of the LSTM is proven,

however, it is not the best choice all the time.

Depending on the nature and the availability of the

data to be processed, variants of the LSTM model

offered by the literature as well as their combination

in deeper networks can improve the performance of

prediction tasks. Also, using the optimum training

hyperparameters improves significantly the

performance of prediction.

It is important to study the internal structure of a

memory cell to provide the robustness of the

predictions before starting to design the models.

Recurrent networks based on memory cells can

handle the restrictions of conventional time series

forecasting methodologies and deliver state-of-the-

art results on temporal data by adding nonlinearities

to a given dataset. Each memory cell has its own time

step and transmits its output to the next cell until the

last one, which gives the expected sequential output.

The recurrent network can be designed in several

ways. By using only one recurrent layer that can

comport a well-defined number of memory cells, we

can choose to design a deeper network by stacking

more recurrent layer cells, which can learn in a more

sophisticated way the data trends. We can also use a

lot of training hyperparameters. Judiciously tuning

those parameters can have a significant impact on the

final prediction performance. This can be hard and

depends widely on the experience of the designer.

In this work, we investigate various RNN based

models to forecast time series data for wind turbine

prognosis purposes using vibration. We first

introduce the LSTM cell, which learns long-term

relationships among time steps in time series data by

maintaining an internal state, and we use it as well as

two modified versions of this architecture, BiLSTM

and GRU units, to predict the trends of the

degradation of the bearing inside the wind turbine

using vibration time series data. During the design

phase of the proposed models, special attention was

paid to the adjustment of all parameters, such as the

number of cells in each recurrent layer, the depth of

the network, and even the training hyperparameters,

which have a direct impact on prediction

performance.

Tuning those parameters can be hard and

depends widely on experience. Also, RNN can be

relatively quick to train because it allows one to

integrate the training process in a Bayesian

optimization loop by considering the loss as the

objective function to minimize. This loop is designed

to compute the best fitting parameters. The results

obtained show the effectiveness of the proposed

method which generates more accurate recurrent

models than those generated using trivial chosen

training parameters. The Bayesian optimization loop

is ideal for tuning the training hyperparameters as

well as the adapted depth and recurrent cell number

of the networks. The objective function of the

optimization process is defined as the loss obtained

by the RNN by computing the gap between the

experimental and the predicted data.

The key contributions of this work are threefold:

✓ investigate several RNN for wind turbine

prognosis using vibration.

✓ optimize training hyperparameters used to

enhance the prediction power of the model.

✓ optimize the model depth by finding the best

number of recurrent layers to stack.

Our paper follows the steps below: An overview

of the proposed method is presented in section 2. The

datasets and the pre-processing steps are detailed in

section 3. The recurrent models employed in this

research and their optimization are described in

section 4. We exhumed and discussed the

experimental results in section 5, and we introduced

the conclusion and future work in section 6.

2. OVERVIEW OF THE PROPOSED

METHOD

Industrial system prognosis is the process of

projecting how long a machine will likely operate

before it requires predictive maintenance to

maximize operating efficiency and reduce

unplanned downtime. Because of this, one of the

most important goals of predictive maintenance,

Prognostics, and Health Management (PHM)

systems is to make an accurate assessment of the

operational state.

We use a standard prognostic methodology in

this study, which includes data import and analysis,

feature extraction, model design, training and

forecasting, and performance assessment. We

investigate several sequence-to-sequence regression

networks based on RNN memory cells such as

LSTM to estimate the operating state of a wind

turbine. The trained models are able to detect

significant degradation trends and update their

internal states when a new observation becomes

available. The entire prognosis workflow is

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

3

Fig. 1. Overview of the proposed optimization loop

integrated in an optimization loop (Fig. 1) designed

to tune the RNN attributes like training

hyperparameters, cell number, and network depth.

Thus, we investigate several LSTM-like RNN

predicted performances, such as LSTM, BiLSTM,

and GRU.

By keeping a hidden state, every one of those

recurrent cells learns long-term relations among time

steps in a time series, conducting additive

interactions during training, which can aid in

enhancing gradient flow across longer sequences

using gradient clipping calculations that prevent

gradient vanishing/explosion by stabilizing the

training event at higher learning rates and/or in the

presence of outliers in the training data [16].

However, these recurrent techniques use different

mechanisms to remember or forget time

dependencies using gates. We also explore different

combinations of these recurrent layers by making the

RNN deeper by inserting extra recurrent layers. This

technique makes it possible to memorize time

dependencies in a more sophisticated way. We

include dropout layers after each recurrent one to

avoid overfitting.

3. PREPROCESSING DATA

Before the detailed explanation of the proposed

framework, we present time series data contained in

the used dataset, collected and presented by the

authors of [17] from the high-speed shaft of a 2MW

wind turbine actuated by a 20-tooth pinion gear. On

each of the 50 days, 50 vibration and tach signals

lasting 6 seconds were recorded at a sampling

frequency of 97656 Hz. During the 50-day

timeframe, an inner race defect occurred, causing the

bearing to fail. We investigate the data in a time

domain thought to be good for prognosis purpose.

First, the vibration signals are shown in the time

domain. by plotting the 50 vibration and tachometer

signals stacked one after each other.

Fig. 2. Signals in the dataset, over 50 days

with 6 second per day, a) cumulative

vibration and b) tachometer

In Fig. 2 we can see the fault severity indicated

by the progression of color from blue to yellow,

which reflects the progression of the defect. We also

discover that the vibration data is noisy and exhibits

a rising trend in signal impulsivity over time steps.

The extracted time-domain features from each time

step, such us kurtosis, form factor, and margin factor,

can measure the signal impulsive behavior. These

are promising features for predictive the future of

wind turbine [18].

As mentioned above, the dataset was collected

over 50 days with 6 seconds per day, giving us

initially 50 time steps, which is insufficient for the

networks to understand the data trend. To resolve

this issue, we consider each second of data as one

time step, in order to have enough data to train and

test the proposed RNNs, which results in 300-time

steps. We proceed by extracting time domain

features. First, we compute the kurtosis of a time

series sequence 𝑋 of length 𝑇 (represented by Fig. 3

a) using the following formula:

 𝑘 = 𝐸(𝑋 − 𝜇)4 𝜎4⁄ , (1)

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

4

Where 𝜇 is the 𝑇 mean, and 𝜎 is the standard

deviation of 𝑋, and 𝐸(𝑡) represents the expected

value of the vibration signal in time 𝑡 ∈ [1: 𝑇]. The

kurtosis function computes a sample version of this

population value. Then we compute the second time

domain feature, which is the shape factor (Fig. 3 b)

using the formula:

 𝑠 = 𝑟𝑚𝑠(𝑋) 𝑚𝑒𝑎𝑛(|𝑋|)⁄ , (2)

Lastly, we use the following formula to compute

the margin factor as illustrated in Fig. 3 c:

 𝑚 = max⁡(𝑋) 𝑚𝑒𝑎𝑛(|𝑋|)⁄ , (3)

Fig. 3. Extracted time domain features, a)

Kurtosis, b) shape factor and c) Margin factor

3.1. Standardize data

We normalize the data for training to have zero

mean and unit variance for a better match and to

avoid the training from diverging during training.

Normalization, also known as z-scoring, is a

common approach to enhance network performance.

We apply the same standardization parameters as

training data to the test data.

The training process can be divergent and

instable when a network is trained using data

distributed over a large interval [19]. This is the

reason why we proceed by standardizing the data by

computing 𝜇 and standard deviation 𝜎 from the

training data to standardize both training and testing

data as follows:

 𝜎 = √
1

𝑋−1
∑ |𝑋𝑡 − 𝜇|2𝑇

𝑡=1 , (4)

Where 𝜇 is the mean of the sequence, and 𝑋𝑡 the

time series data in time 𝑡 ∈ [1: 𝑇].

 𝜇 =
1

𝑋
∑ 𝑋𝑡

𝑇
𝑡=1 , (5)

Then we can compute the standardized time

series data 𝑋𝑠 as follow:

 𝑋𝑠 = (𝑋 − 𝜇)/𝜎, (6)

3.2. Prepare predictors and responses

In the forecasting tasks, to test the effectiveness

of the method, the standard protocol is to split

available data into two distinct subsets. The first one,

composed of the starting part of the data, is used to

train the network. The networks can establish long-

term relationships across training data and fit the

data trends during the training phase. The second

subset is used as metric data to compute the gap

between this actual subset and the predicted values.

We decided to use the first 90% of the time steps for

the training and the last 10% for the testing.

A sequence-to-sequence regression technique is

used to predict the values of future time steps in time

series data. So, the output (label) vector is the same

as the training sequence vector but with values

pushed forward one time step. That is, at each time

step of the input sequence, the RNNs learn to predict

the value of the next time step. And we perform the

same process with testing data.

 𝑋𝑠 = 𝑋𝑠(1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋𝑠) − 1), (7)

 𝑙𝑎𝑏𝑒𝑙 = 𝑋𝑠(2: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋𝑠)), (8)

The main idea is to forecast the values of future

time steps in a sequence using training sequences

with values shifted by one time step as replies. As a

result, the RNN may learn to anticipate the value of

the next time step for each time step of the input

sequence and modify the network state with fresh

incoming data for each time step of the input

sequence.

4. DEFINE THE RNNs ARCHITECTURES

In this work, we investigate prediction accuracies

obtained by several types of RNNs, trained using

optimized hyperparameters. So, we choose to design

an LSTM [20] based RNN. An LSTM unit can learn

dependencies in long time series data, to a deeper

version of LSTM obtained by stacking two or more

LSTM layers [21] to effectively deal with more long-

term temporal dependencies inside the data. To

prevent overfitting, we insert dropout layers after

each of the LSTM layers.

We also implemented the Bidirectional LSTM or

BiLSTM [22], and a deeper version of BiLSTM,

which, in the same way as classic LSTM, can

remember dependencies between long sequences but

in both directions, from the beginning of the

sequence to the end and vice versa. BiLSTM is an

enhanced version of LSTM by encapsulating two

LSTM cells. The first cell learns from the original

input sequence, while the second one uses the

sequence in reversed order. This technique can give

more information about the context of the sequence.

Similar to the LSTM cell, we also introduced the

GRU cell in [23]. Like the two first models, the GRU

cell allows to learn temporal structure in time series

but ureses a simpler mechanism to update and forget

dependencies between time steps.

4.1. Mathematical description of the used RNNs

As mentioned above, both BiLSTM and GRU are

modified versions of the basic LSTM model. In this

section we survey the mathematical fundaments of

these methods and how the memory cells can choose

information to remember and those to forget.

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

5

Fig. 4. Main recurrent cells internal

structures, a) LSTM, b) GRU and c) BiLSTM

a) LSTM

The LSTM cell can keep long-term dependencies

among time steps in time series data by storing

information learnt from prior time steps in its

internal state. At each time step, the state is updated

by adding or removing information using gates.

The internal construction of an LSTM cell is

depicted in Fig. 4 a, showing the three gates: the

input, the output, the forget gate, and the hidden state

cell. The three gates are responsible for regulating

the flow of data and deciding to store significant

information while forgetting unimportant

information. LSTM performs well for time series

prediction. The advent of LSTM has solved two

major problems that RNNs face: vanishing and

exploding gradients. By applying the next equation

to 𝑋𝑡 the time series data, where 𝑡 ∈ [1: 𝑇], we can

determine the hidden cell state 𝐶𝑡 and the current

output vector 𝐻𝑡 of the LSTM cell using an input

sequence 𝑋𝑡 of length 𝑇.

 𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 ⊙ 𝐺𝑡 , (9)

 𝐻𝑡 = 𝑂𝑡 ⊙ tanh(𝐶𝑡), (10)

To update the hidden state, we use the tanh

activation function, where ⊙⁡represents the element-

wise product:

 tanh(𝑋) =
sinh(𝑋)

cosh(𝑋)
=

𝑒2𝑋−1

𝑒2X−1
, (11)

And we apply sigmoid activation function to the

gates:

 σ(x) = (1 + 𝑒−𝑋)−1, (12)

The input gate, forget gate, cell input, and output

gate are denoted by 𝐼, 𝐹, 𝐺 and 𝑂, respectively, for

each element at time step 𝑡, the following equation

is used:

The input gate 𝐼𝑡 that control level of update:

 𝐼𝑡 = σ(𝑊𝑖 . 𝑋𝑡 + 𝑅𝑖𝐻𝑡−1 + 𝑏𝑖), (13)

The forget gate 𝐹𝑡 that control the data to forget:

 𝐼𝑡 = σ(𝑊𝑖 . 𝑋𝑡 + 𝑅𝑖𝐻𝑡−1 + 𝑏𝑖), (14)

The input 𝐺𝑡 that add information to keep:

 𝐺𝑡 = σ(𝑊𝑔. 𝑋𝑡 + 𝑅𝑔𝐻𝑡−1 + 𝑏𝑔), (15)

We update the output state by adding a part of

data of the cell state defined by the output gate 𝑂𝑡as

fellow:

 𝑂𝑡 = σ(𝑊𝑜 . 𝑋𝑡 + 𝑅𝑜𝑋𝑡−1 + 𝑏𝑜), (16)

The learnable parameters of the LSTM cell are

optimized during the training process, comprising

weights 𝑊, the recurrent weights 𝑅 and the bias 𝑏 of

each gate.

b) GRU

Even the GRU cells (Fig. 4 b) are similar to

LSTM in that they use gates, but they have fewer

parameters than LSTM since they don't have an

output gate. GRU's performance on music and voice

modelling tasks was found to be equal to that of

LSTM. On some smaller datasets, GRU has been

found to perform even better. As a result, it is a

widely used and simplified LSTM cell. The

following equation is used to update the GRU cell's

hidden state:

 𝐻𝑡 = (1 − 𝑍𝑡) ⊙ 𝐻𝑡 + 𝑍𝑡 ⊙ 𝐻𝑡−1, (17)

To update the gate, we use the following

equation, which determines how much the GRU unit

is updated:

 𝑍𝑡 = σ(𝑊𝑧 . 𝑋𝑡 + 𝑅𝑧𝐻𝑡−1 + 𝑏𝑧), (18)

The reset gate is calculated in the same way as

the update gate, with the following expression:

 𝑅𝑡 = σ(𝑊𝑟 . 𝑋𝑡 + 𝑅𝑟𝐻𝑡−1 + 𝑏𝑟), (19)

By applying the hyperbolic 𝑡𝑎𝑛 function to the

reset gate, which is defined by the following

function, a new remember gate is made:

 𝐻𝑡 = tanh(𝑊ℎ. 𝑋𝑡 + (𝑅𝑡 ⊙ 𝐻𝑡−1)𝑅ℎ + 𝑏ℎ), (20)

When, the time series of input 𝑋𝑡 weights 𝑊, the

recurrent weights 𝑅 and the bias 𝑏 of each

component 𝑍, 𝑅 and 𝐻, are respectively, the

learnable weights of the GRU cell, optimized over

network training.

c) BiLSTM

We use BiLSTM to understand data in two

directions, from the beginning to the end, and vice

versa, because it runs the inputs in two directions,

one from past to future and the other from future to

past. What distinguishes this approach from

unidirectional is that the LSTM that runs backwards

preserves information from the future, whereas the

BiLSTM encapsulates two cells, which can

remember information from both directions of time

at any point in time. We can see in Fig. 4 c the

BiLSTM cell internal structure. The forward,

backward, and output sequences are managed using

the following formulas:

 𝐻⃗⃗ 𝑡 = σ(𝑊ℎ⃗⃗ . 𝑋𝑡 + 𝐻⃗⃗ 𝑡−1𝑅ℎ⃗⃗ + 𝑏ℎ⃗⃗), (21)

 𝐻⃗⃗⃖𝑡 = σ(𝑊ℎ⃗⃗⃖ . 𝑋𝑡 + 𝐻⃗⃗ 𝑡−1𝑅ℎ⃗⃗⃖ + 𝑏ℎ⃗⃗⃖), (22)

 𝑌𝑡 = 𝐻⃗⃗ 𝑡 .𝑊𝑦 + 𝐻⃗⃗⃖𝑡𝑊𝑦 + 𝑏𝑦), (23)

Where σ represent the sigmoid function. The

BiLSTM is useful in cases when data context is

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

6

required. It has been frequently utilized in

classification and in forecasting [24].

4.2. Used loss function

As mentioned above, forecasting time series data

is mainly a sequence-to-sequence regression. The

most adequate loss function used in regression

problems is defined as the Mean Absolute Error

(MAE) loss. This is the average of the absolute error

of the forecasted values compared to actual values

over the mini-batch for each time step. This loss

function is used to update learnable weights from all

layers of the network during the learning process by

backpropagation:

 MAE =
1

𝑇
∑ |𝑋𝑡 − 𝑌𝑡|

𝑇
𝑡=1 , (24)

Where 𝑋𝑡 is the true values and 𝑌𝑡 is the predicted

values, 𝑇 is the length of the considered sequence.

The learnable parameters are initialized

randomly at the beginning of the training, but

currently the state of the art in the matter offers

several methods to do it. The choice of the

initialization method can have an important impact

on how well the network trains. Hence, we choose to

initialize weights and bias in all learnable layers

using the method described in [25]. This gives the

best results. In this method, the authors resolve the

problem of exploding/vanishing gradient in the

learnable layer by multiplying weights obtained

from random initialization by a specific factor, as:

 𝑊𝑙 = random(𝑠𝑖𝑧𝑒𝑙 , 𝑠𝑖𝑧𝑒𝑙−1)√
2

𝑠𝑖𝑧𝑒𝑙−1, (25)

4.3. Studied RNNs

As cited above, in this study we will explore the

three main recurrent cell types, which are LSTM,

BiLSTM, and GRU. Each type is presented in a

simple form with a single recurrent layer, which will

be used to memorize the temporal dependencies

between time steps, as well as a deeper version with

the stacking of two recurrent layers, serving to

memorize more sophisticated relations between the

time steps. Initially, we study the following six

architectures in Table 1:

Table 1. Six studied recurrent architectures

LSTM BiLSTM GRU
Deep

LSTM

Deep

BiLSTM

Deep

GRU
input input input input input Input

recurrent

cell1

recurrent

cell1

recurrent

cell1

recurrent

cell1

recurrent

cell1

recurrent

cell1

fully

connected

fully

connected

fully

connected

recurrent

cell2

recurrent

cell2

recurrent

cell2

mae

regression

mae

regression

mae

regression
dropout dropout Dropout

fully

connected

fully

connected

fully

connected

mae

regression

mae

regression

mae

regression

In a second step, this configuration is reproduced

to build deeper networks inside the Bayesian

optimization loop by stacking several recurrent

layers separated by dropout layers in order to avoid

overfitting. A dropout layer sets random elements

from the input to zero with some probability [26].

4.4. Training hyperparameters

For the first time, to highlight the prediction

improvement by using optimal hyperparameters, we

start by exploring the forecasting of six networks that

contain only one or two LSTM, BiLSTM, and GRU

layers. Trained using default hyperparameters, we

specify fixed values for all the training

hyperparameters. We set the training optimizer to

ADAM (ADAptive Moment estimation) [27], which

is a type of Stochastic Gradient Descent with

Momentum (SGDM) using an automatically adapted

learning rate by a specific momentum term, and we

train for 200 epochs. The learning rate can have a

direct impact on the convergence and the speed of

the network. we decided to set it to 0.05 and we plan

to drop this value by a factor of 0.2 during the

training progress to keep stability of the training. We

summarize the hyperparameters used to perform the

training process, as well as the properties of

recurrent cell numbers, in the following Table 2.

Table 2. Recurrent cells number and training

hyperparameters

Parameter Value

training optimizer ADAM

recurrent cell1 10

recurrent cell2 20

dropout 0.2

training epochs 200

initial learning rate 0.05

L2Regularization 10-4

approach with a gradient threshold L2norm

gradient threshold 1

drop learning rate epochs 100

To monitor the effectiveness of the training

process, we plot the training loss of every network.

We extract the training loss stacked during the

training process for every epoch. For each of the

networks, we plot the epoch numbers against the

validation loss.

Fig. 5. Validation loss over epochs of the

proposed RNNs

Fig. 5 shows the evolution of the loss function of

shallow and deep LSTM, BiLSTM, and GRU

networks during the training stage as a function of

the number of epochs. It can be observed that all of

the models converge quickly, with the GRU being

the fastest, followed by deep GRU. This is mostly

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

7

due to the GRU being a basic model with fewer

computational parameters than LSTM and BiLSTM.

5. RESULTS AND DISCUSSION

The most important elements for evaluating a

forecasting system’s performance are twofold: first,

we can observe the activations inside a recurrent cell

to evaluate the robustness of the training process;

and second, we can use metrics to quantify these

performances; the most common is the Root Mean

Square Error (RMSE). It shows how well the

observed data matches the expected values. Lower

RMSE values imply better fit.

5.1. Visualize network activations

We can see the network's learnt features by

computing the recurrent layer's activations for each

time step of the sequences. we note that before the

training the parameters were initialized randomly.

Fig. 6. Activation visualization of one trained

RNNs

The heatmap in Fig. 6 represents the activation of

the GRU-based neural network with a single

recurrent layer. We can notice that the activations

fluctuate over time, implying that the cell weights

are adjusted in response to data fluctuations.

5.2. Errors metrics of the recurrent model

To compare the performances of the trained

models, we must quantify the gap between the real

and predicted values. We compute two quantitative

measurements, which are Root Mean Square Error

(RMSE), Mean Absolute Error (MAE). And the

qualitative one, which is the Mean Absolute

Percentage Error (MAPE), by comparing the testing

dataset by comparing unstandardized prediction

data.

 RMSE = √∑
(𝑋𝑡−𝑌𝑡)

2

𝑇

𝑇
𝑡=1 , (26)

Where 𝑋𝑡 is the true values and 𝑌𝑡 is the predicted

values, 𝑇 is the length of the considered sequence.

Unlike RMSE, MAE described by formula (24)

allows to reduce the effects of outliers or incorrectly

forecasted points. While the absolute error metrics

RMSE and MAE presented above are on the same

scale as the data (case number), MAPE quantifies the

relative percentage error and can provide a clearer

view on each network’s performance. MAPE is

computed by taking the mean of the individual

forecast point errors divided by the actual value.

 MAPE =
100

𝑇
∑ |

𝑋𝑡−𝑌𝑡

𝑋𝑡
|𝑇

𝑡=1 , (27)

Absolute and relative metrics are computed from

the unstandardized testing data compared to the best

predictions. We can forecast the next time step for

each prediction by utilizing the actual data from the

previous time step. Before computing the metrics,

we unstandardized the test dataset and the

predictions by using the same standardization factors

that we had already found from training subset.

5.3. Discussion of results

The quality of the prediction will now be

evaluated using the testing dataset that was not

included in the training process. The testing data

encompasses 10% of the total data, which includes

the three time-domain features extracted from the

vibration data. In Table 3 and Fig. 7, we compute the

RMSE of the six proposed models for each of the

three classes in the dataset. As a first remark, we can

notice the models containing a single recurrent layer

perform better than those with a deeper architecture.

This is mainly due to the limited data sequence used

for training the networks. Also, the GRU-based

models perform better due to their simple forecasting

mechanism, well adapted to short data sequences.

Table 3. RMSE of the RNNs

LSTM BiLSTM GRU

Deep

LSTM

Deep

BiLSTM

Deep

GRU

Kurtosis 0.1369 0.2246 0.0805 0.2117 0.2935 0.1181

Shape

factor
0.0043 0.0104 0.0053 0.0089 0.0127 0.0067

Margin

factor
0.1318 0.0946 0.1135 0.0471 0.1113 0.1133

Sum 0.2730 0.3296 0.1993 0.2677 0.4175 0.2380

Table 4. MAE of the RNNs

LSTM BiLSTM GRU

Deep

LSTM

Deep

BiLSTM

Deep

GRU

Kurtosis 0.1158 0.1597 0.0580 0.1385 0.1813 0.0757

Shape

factor
0.0038 0.0072 0.0037 0.0055 0.0080 0.0043

Margin

factor
0.1114 0.0837 0.0930 0.0399 0.0971 0.0877

Sum 0.2309 0.2506 0.1547 0.1838 0.2864 0.1677

Table 5. MAPE of the RNNs (in %)

LSTM BiLSTM GRU

Deep

LSTM

Deep

BiLSTM

Deep

GRU

Kurtosis 2.6794 3.6482 1.3196 3.1452 4.1052 1.7123

Shape

factor
0.2889 0.5524 0.2834 0.4175 0.6117 0.3264

Margin

factor
2.5969 2.0330 2.2730 0.9447 2.3447 2.1843

Sum 5.5652 6.2336 3.8760 4.5074 7.0616 4.2230

These tendencies are confirmed using the MAE

and the MAPE metrics illustrated in Table 4 and

Table 5 each (graphically in Fig. 8 and Fig. 9). With

3.8760% of prediction errors, the GRU is in the first

position, followed by the deep GRU with 4.2230%.

We note that although the fact of increasing the

number of recurrent layers in a network should

normally give a better result given the possibility of

memorizing long sequences with more precision, we

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

8

see that this is not the case in this experiment. In our

opinion, this degradation in the performance of the

deep models is due to the trivial choice of the

training hyperparameters as well as the number of

cells that each layer must contain.

Fig. 7. RMSE comparison (values)

Fig. 8. MAE comparison (values)

Fig. 9. MAPE comparison (%)

In Fig. 10, we compare side by side the actual

values and the predicted values. We note that all the

models have been able to capture the trend of the

data. To examine in a more precise way the learning

of the dynamics of the data, we consult Fig. 11-16,

which show an overlay of the actual data and the

predicted ones, with a calculation of the prediction

errors for each time step. The trends observed

previously are confirmed. The network based on

GRU learns the dynamics of the data. We also note

that the LSTM model is also efficient, while the deep

networks are all below expectations.

Fig. 10. The training data with the forecasted

values

Fig. 11. Values predicted by LSTM, as well

as testing data and the related MAPE

Fig. 12. Values predicted by BiLSTM, as well as

testing data and the related MAPEE

Fig. 13. Values predicted by GRU, as well as

testing data and the related MAPE

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

9

Fig. 14. Values predicted by deep LSTM, as

well as testing data and the related MAPE

Fig. 15. Values predicted by deep BiLSTM,

as well as testing data and the related MAPE

Fig. 16. Values predicted by deep GRU, as

well as testing data and the related MAPE

In comparison to the other evaluated models, the

GRU-based method delivers improved predictions,

as seen in Fig. 13. The metrics MAE, RMSE, and

MAPE values calculated based on the prediction and

reported in Table 3, 4 and 5 were used to evaluate

the obtained results quantitatively and qualitatively.

It is clear that the GRU model with one recurrent

layer outperforms the others in terms of predicting

performance, with reduced RMSE, MAE, and

MAPE error metrics.

5.4. Network parameters optimization

We must provide the architecture (depth) and

also the training hyperparameters while training a

RNN. Adjusting these settings is a challenging

ongoing process that requires the designer's

expertise. The optimization process can help us find

the best fit parameters. In this context, we find that

Bayesian optimization is well adapted to optimize

black box functions that are time-consuming to

evaluate, like the deep learning training process. The

optimization algorithm keeps track of the objective

function's Gaussian process model and trains it with

objective function evaluations.

Because the evolution of the objective function is

stochastic, the Bayesian method considers it as a

random function and applies a prior to it. Which can

encode the function's behavior after accumulating

the function evaluations, which are treated as data.

Then, the prior is modified to create the posterior

distribution over the objective function. This

posterior distribution is utilized to generate an

acquisition function that specifies the query point for

the next iteration. There are several approaches to

defining the prior/posterior distribution over the

objective function. Gaussian processes are used in

the most prevalent two approaches. It creates a

surrogate for the objective function, utilizes a

Bayesian machine learning approach called

Gaussian process regression to quantify the

uncertainty in that surrogate, and then utilizes an

acquisition function created from the surrogate to

select wherever to sample. The Bayesian

optimization method uses Gaussian process

regression and three common acquisition functions:

predicted improvement, entropy search, and

knowledge gradient.

We choose to optimize three parameters; one

training hyperparameter, which is the learning rate;

and two parameters relative to the design of the

network. We optimize the number of the stacked

recurrent layers (depth) and the number of recurrent

cells in each one.

The network has three sections. The first one is

composed of a sequence input layer. The second

contains a recurrent layer followed by a dropout

layer. This section is used to control the network

depth by repeating it several times according to

depth value. The last section has a fully connected

layer. At the top there is a regression layer to

compute loss.

Table 6. Parameter optimization ranges and search

space

Parameter Range Search space

Initial learning rate 0.001-0.5 log

Cell number 10-60 integer

Network depth 1-6 integer

Objective evaluation

iteration
1200 /

Then, we define the objective function to be

minimized, this function is the sum of the MAPE

predictions errors of the three classes defined as

follow:

 𝑓(𝑐𝑒𝑙𝑙, 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒) =

arg⁡min
𝑐𝑒𝑙𝑙,𝑑𝑒𝑝𝑡ℎ,𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒

∑ 𝑀𝐴𝑃𝐸𝑖
3
𝑖=1 , (28)

Were 𝑖 ∈
{𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, shapefactor,marginfactor}, 𝑐𝑒𝑙𝑙 ∈
{10,11, … ,60}, 𝑑𝑒𝑝𝑡ℎ ∈
{1,2, … ,6}, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∈ [0.001,0.5],

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

10

In Table 6, we define the searching ranges, the

types of the variables (integer, categorical, or real)

and the search space transformation (linear or

logarithmic) for the three optimization variables.

The optimization process is performed for 1200

iterations.

In Table 7 and in Fig. 17, we can find the results

of the optimization process after performing 134

iterations. Get by the best scored RNN is composed

of 2 recurrent layers, using 34 cells in the first one

and 14 in the second layer. With learning rate set to

0.0369, we can get the best objective function of

1.8505% which is the sum of relative errors in all

classes. This prediction result is significantly more

accurate than the MAPE given by the best non

optimized GRU network, with 3.8760% of

prediction errors as shown in the previous section.

Table 7. Values offering the best objective function

compared to the best non optimized network

Network Depth Cell1 Cell2

Initial

learning

rate

Best fit

(MAPE)

Optimized 2 34 14 0.0369 1.8505%

GRU 1 10 / 0.05 3.8760%

Fig. 17. Optimization parameters and best fit

6. CONCLUSION AND FUTURE WORK

In this work, we further studied the use of

recurrent neural networks in the prediction and

prognosis of the operational state of a wind turbine.

We mainly based our study on the models derived

from LSTM, all of which includes a cell memorizing

long-term temporary dependencies. This cell is

updated using gates. This investigation showed us

the power of these tools in predicting time series data

trends. We also explored architectures comprising

several stacked recurrent layers able to learn more

complex data dependencies over time.

Even though there isn’t a lot of data available and

it doesn’t cover a long period of the time, the

proposed models still manage to capture the

dynamics and trends of the wind turbine’s operating

condition getting worse. We find that the most

accurate predictions are made by GRU-based

networks, which, despite having a simpler decision

system then traditional LSTMs, are better at learning

and capturing data trends.

Before training a network, the design and

definition of hyperparameters is a very important

step which will directly impact the predictive

performance of the model. This phase is often

problematic and depends on the experience of the

designer. Using Bayesian optimization loop to

effectively tune those parameters gives significant

enhancement of the accuracy of the prediction. In

light of this fact, we plan to conduct further studies

on the optimization of network architecture

parameters like network depth and the training

hyperparameters using more complex optimization

algorithms like particle swarm or genetic

optimization. Taking the optimal parameters can

significantly improve the performance of the

network.

Another very promising avenue is to include

feature extraction steps in network layers to link an

end-to-end architecture and thus avoid bottlenecks in

data processing. This type of layer can integrate

several types of features, such as the Fourier

transform, the spectrogram, and the wavelet.

Author contributions: research concept and design, A.K.,

R.K.; Collection and/or assembly of data, A.K., R.K.; Data

analysis and interpretation, A.K., R.K.; Writing the article,

A.K., R.K.; Critical revision of the article, A.K., R.K.;

Final approval of the article, A.K., R.K.

Declaration of competing interest: The authors declare

that they have no known competing financial interests or

personal relationships that could have appeared to

influence the work reported in this paper.

REFERENCES

1. Lipinski D, Majewski M. System for monitoring and

optimization of micro- and nano-machining processes

using intelligent voice and visual communication. In

Lecture Notes in Computer Science; Springer: Berlin,

Germany, 2013;8206:16-23.

2. Majewski M, Kacalak W. Smart control of lifting

devices using patterns and antipatterns. Advances in

intelligent systems and computing. In Artificial

Intelligence. Trends in Intelligent Systems; Springer:

Cham, Switzerland, 2017;573:486-493.

https://doi.org/10.1007/978-3-319-57261-1_48.

3. Ganga D, Ramachandran V. Adaptive prediction

model for effective electrical machine maintenance.

Journal of Quality in Maintenance Engineering 2020;

26(1):166-180. https://doi.org/10.1108/JQME-12-

2017-0087.

4. Demidova L, Marchev D. Development of the

forecasting model for the complex technical systems'

failures time during the proactive maintenance using

the recurrent neural networks' technology. 2nd

International Conference on Control Systems,

Mathematical Modeling, Automation and Energy

Efficiency (SUMMA). 2020:370-374.

https://doi.org/10.1109/SUMMA50634.2020.928078

1.

5. Cherif H, Benakcha A, Laib I, Chehaidia S, Menacer

A, Soudan B, Olabi A-G. Early detection and

localization of stator inter-turn faults based on discrete

wavelet energy ratio and neural networks in induction

https://doi.org/10.1007/978-3-319-57261-1_48
https://www.emerald.com/insight/search?q=Ganga%20D.
https://doi.org/10.1108/JQME-12-2017-0087
https://doi.org/10.1108/JQME-12-2017-0087

DIAGNOSTYKA, Vol. 23, No. 3 (2022)

Kerboua A, Kelaiaia R.: Recurrent neural network optimization for wind turbine …

11

motor. Energy. 2020;212:118684.

https://doi.org/10.1016/j.energy.2020.118684.

6. Rosato A, Araneo R, Andreotti A, Succetti F, Panella

M. 2-D Convolutional Deep Neural Network for the

Multivariate Prediction of Photovoltaic Time Series.

Energies. 2021;14:2392.

https://doi.org/10.3390/en14092392.

7. Azzouzi M, Diarra R, Popescu D. Fault diagnosis of

sensors, actuators and wind turbine system.

Diagnostyka. 2018;19(4):3-10.

https://doi.org/10.29354/diag/93846.

8. Tarek K, Abdelaziz L, Zoubir C, Kais K, Karim N.

Optimized multi layer perceptron artificial neural

network based fault diagnosis of induction motor using

vibration signals. Diagnostyka. 2021;22(1):65-74.

https://doi.org/10.29354/diag/133091.

9. Mana M, Piccioni E, Terzi L. Wind turbine fault

diagnosis through temperature analysis: an Artificial

Neural Network approach. Diagnostyka. 2017;18(1):

9-16.

10. Sajid H, Hossam AG. Vibration analysis and time

series prediction for wind turbine gearbox prognostics.

International Journal of Prognostics and Health

Management; Special Issue on Wind Turbine

PHM. 2013;4(3).

https://doi.org/10.36001/ijphm.2013.v4i3.2144.

11. Mao W, He J, Tang J, Li Y. Predicting remaining

useful life of rolling bearings based on deep feature

representation and long short-term memory neural

network. Advances in Mechanical Engineering 2018;

10(12). https://doi.org/10.1177/1687814018817184.

12. Liu, ZH., Meng, XD., Wei, HL, Chen L, Lu BL, Wang

ZH, Chen L. A Regularized LSTM method for

predicting remaining useful life of rolling bearings.

Int. J. Autom. Comput. 2021;18:581-593.

https://doi.org/10.1007/s11633-020-1276-6.

13. Xie Y, Zhao J, Qiang B, Mi L, Tang C, Li L. Attention

mechanism-based CNN-LSTM model for wind

turbine fault prediction using SSN ontology

annotation. Wireless Communications and Mobile

Computing. 2021:627588.

https://doi.org/10.1155/2021/6627588.

14. Khorram A, Khalooei M, Rezghi M. End-to-end

CNN + LSTM deep learning approach for bearing

fault diagnosis. Applied Intellifence 2021;51:736-751.

https://doi.org/10.1007/s10489-020-01859-1.

15. Baskar P-K, Kaluvan H. Long short-term memory

(LSTM) recurrent neural network (RNN) based traffic

forecasting for intelligent transportation. AIP

Conference Proceedings 2022;2435:020039.

https://doi.org/10.1063/5.0083590.

16. Pascanu R, Mikolov T, Bengio Y. On the difficulty of

training recurrent neural networks. International

conference on machine learning PMLR 2013:1310-

1318.

17. Bechhoefer E, Van Hecke B, He D. Processing for

improved spectral analysis. Annual Conference of the

Prognostics and Health Management Society 2013.

18. Jaouher B, Saidi L, Harrath S, Bechhoefer E,

Benbouzid M. Online automatic diagnosis of wind

turbine bearings progressive degradations under real

experimental conditions based on unsupervised

machine learning. Applied Acoustics 2017;133:167-

181. https://doi.org/10.1016/j.apacoust.2017.11.021.

19. Brownlee J. How to scale data for long short-term

memory networks in Python. 2017.

https://machinelearningmastery.com/how-to-scale-

data-for-long-short-term-memory-networks-in-

python/.

20. Hochreiter S, Schmidhuber J. Long short-term

memory. Neural computation. 1997;9(8):1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735.

21. Kerboua A, Metatla A, Kelaiaia R, Batouche M. Real-

time safety monitoring in the induction motor using

deep hierarchic long short-term memory. Int J Adv

Manuf Technol. 2018;99:2245–2255.

https://doi.org/10.1007/s00170-018-2607-4.

22. Schuster M, Paliwal K. Bidirectional recurrent neural

networks. IEEE transactions on Signal Processing.

1997;45(11):2673-2681.

https://doi.org/10.1109/78.650093.

23. Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D,

Bougares F, Schwenk H, Bengio Y. Learning phrase

representations using RNN encoder-decoder for

statistical machine translation. arXiv. 2014.

https://doi.org/10.48550/arXiv.1406.1078.

24. Wang S, Wang X, Wang S, Wang D. Bi-directional

long short-term memory method based on attention

mechanism and rolling update for short-term load

forecasting. International Journal of Electrical Power

& Energy Systems. 2019;109(2):470-479.

https://doi.org/10.1016/j.ijepes.2019.02.022.

25. He K, Zhang X, Ren S, Sun J. Delving deep into

rectifiers: Surpassing human-level performance on

imagenet classification. Proceedings of the IEEE

international conference on computer vision. 2015;

1026-1034.

https://doi.org/10.48550/arXiv.1502.01852.

26. Srivastava N, Hinton G, Krizhevsky A, Sutskever I,

Salakhutdinov R. Dropout: A Simple way to prevent

neural networks from overfitting. Journal of Machine

Learning Research 2014;\ 15:1929-1958.

27. Kingma D-P, Jimmy B. Adam: A method for

stochastic optimization. arXiv 2014:1412.6980.

https://doi.org/10.5555/2627435.2670313.

Received 2022-04-21

Accepted 2022-06-25

Available online 2022-06-27

Adlen KERBOUA

Received his MSc (2004) and

magister (2012) in computer

sciences, PhD (2018). Thesis:

improving industrial safety

using intelligent system.

Currently, he is associate

professor in the University of

Skikda, Algeria.

Ridha KELAIAIA

Received the magister in

Robotics and Ph.D. degree in

2012. His current position is a

full professor at the University

of Skikda. His research

interests are oriented towards

Robotics, Electromechanics

and Engineering Applications

of Artificial Intelligence.

https://doi.org/10.1016/j.energy.2020.118684
https://doi.org/10.3390/en14092392
https://doi.org/10.36001/ijphm.2013.v4i3.2144
https://doi.org/10.1177/1687814018817184
https://doi.org/10.1007/s11633-020-1276-6
https://doi.org/10.1155/2021/6627588
https://doi.org/10.1007/s10489-020-01859-1
https://aip.scitation.org/author/Baskar%2C+Praveen+Kumar
https://aip.scitation.org/author/Kaluvan%2C+Hariharan
https://doi.org/10.1063/5.0083590
https://doi.org/10.1016/j.apacoust.2017.11.021
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s00170-018-2607-4
https://doi.org/10.1109/78.650093
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.1016/j.ijepes.2019.02.022
https://doi.org/10.48550/arXiv.1502.01852
https://doi.org/10.5555/2627435.2670313

