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Abstract 

This research focuses on employing Recurrent Neural Networks (RNN) to prognosis a wind turbine 

operation’s health from collected vibration time series data, by using several memory cell variations, including 

Long Short Time Memory (LSTM), Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), which are 

integrated into various architectures. We tune the training hyperparameters as well as the adapted depth and 

recurrent cell number of the proposed networks to obtain the most accurate predictions. Tuning those 

parameters is a hard task and depends widely on the experience of the designer. This can be resolved by 

integrating the training process in a Bayesian optimization loop where the loss is considered as the objective 

function to minimize. The obtained results show the effectiveness of the proposed method, which generates 

more accurate recurrent models with a more accurate prognosis of the operating state of the wind turbine than 

those generated using trivial training parameters. 
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1. INTRODUCTION AND RELATED WORK 

 

Due to its efficiency, artificial intelligence is 

becoming a key tool in the development of numerous 

industries, particularly in the manufacturing industry 

[1, 2], where several issues are open. Recently, time 

series have become a general subject of tremendous 

practical interest. because it allows us to deduce the 

future values of a series from its past values with a 

margin of error. Numerous successful applications in 

several domains, such as engineering [3, 4] and 

manufacturing, energy production and management 

[5, 6], and other fields, have been documented in the 

appropriate literature. The use of deep learning tools 

for forecasting time series data trends is relatively 

recent, and continues to attract the attention of the 

scientific community in different fields of 

technology. 

Several frameworks are reported in the literature 

to resolve this issue. For instance, wind energy [7], 

which is among the sources of energy that see the 

fastest growth in the world. Nevertheless, the failure 

to detect the breakdown of turbine parts can be 

exceptionally exorbitant [8]. Consequently, defining 

and building models for the predictive maintenance 

of wind turbines [9] is a crucial task. It is noted that 

preventive maintenance can be done at regular 

intervals to prevent common problems. In this 

context, the authors of [10] employed two different 

methodologies using Nonlinear Auto-Regressive 
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eXogenous input (NARX) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) to estimate the 

health of a wind turbine gearbox using vibration 

trend index. The experimentation was conducted on 

two datasets and demonstrated that the two proposed 

prediction methods perform well at estimating the 

fluctuations of the monitoring indices. 

The authors proposed a new method based on 

deep feature modelling and a LSTM neural network 

for predicting the remaining useful life of rolling 

bearings in [11]. They carried out experiments using 

IEEE PHM Challenge 2012 data sets. The obtained 

results demonstrate the importance of the suggested 

method's performance improvement in both 

prediction accuracy and numerical stability. In the 

same context, Liu ZH et al. [12] proposed an 

approach that combines elastic net with LSTM. The 

E-LSTM algorithm is made up of an elastic mesh and 

LSTM, utilizing the LSTM to anticipate the 

remaining useful life using temporal-spatial 

correlation.  In their work [13], the researchers 

proposed a Convolutional Neural Network or CNN-

LSTM model based on an attention mechanism for 

wind turbine fault prediction. The model is trained 

using the Semantic Sensor Network (SSN) ontology-

annotated icing fault and yaw fault datasets of wind 

turbines. The trained model can accurately anticipate 

the probability of a wind turbine fault. The 

experimental results, according to the authors, 

suggest that the proposed model is more effective 
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and superior than some of the current mainstream 

models, based on real wind turbine test data. 

The authors in [14] proposed an end-to-end fault 

diagnosis approach. They employ similar temporal 

sequences as input to a Convolutional LSTM 

(CLSTM) to detect the bearing defect with high 

accuracy in a small duration of time. Authors noticed 

that the method can achieve good accuracy without 

performing pre-processing. The fault diagnosis 

method's effectiveness and feasibility are 

demonstrated by comparing the results to those of 

existing intelligent fault detection systems using 

benchmark experimental vibration datasets. The 

authors [15] employed the LSTM to anticipate traffic 

flow using traffic sensor data that was available as a 

big data set. Then, they compared the results 

obtained by LSTM to the traditional statistical 

methods of traffic prediction. It is found that the 

LSTM-based model performs better. All of these 

studies train networks, including basic versions of 

LSTM-like memory cells, and they try to improve 

the performance of prediction by varying the 

hyperparameters only. 

Even if the efficiency of the LSTM is proven, 

however, it is not the best choice all the time. 

Depending on the nature and the availability of the 

data to be processed, variants of the LSTM model 

offered by the literature as well as their combination 

in deeper networks can improve the performance of 

prediction tasks. Also, using the optimum training 

hyperparameters improves significantly the 

performance of prediction. 

It is important to study the internal structure of a 

memory cell to provide the robustness of the 

predictions before starting to design the models. 

Recurrent networks based on memory cells can 

handle the restrictions of conventional time series 

forecasting methodologies and deliver state-of-the-

art results on temporal data by adding nonlinearities 

to a given dataset. Each memory cell has its own time 

step and transmits its output to the next cell until the 

last one, which gives the expected sequential output. 

The recurrent network can be designed in several 

ways. By using only one recurrent layer that can 

comport a well-defined number of memory cells, we 

can choose to design a deeper network by stacking 

more recurrent layer cells, which can learn in a more 

sophisticated way the data trends. We can also use a 

lot of training hyperparameters. Judiciously tuning 

those parameters can have a significant impact on the 

final prediction performance. This can be hard and 

depends widely on the experience of the designer. 

In this work, we investigate various RNN based 

models to forecast time series data for wind turbine 

prognosis purposes using vibration. We first 

introduce the LSTM cell, which learns long-term 

relationships among time steps in time series data by 

maintaining an internal state, and we use it as well as 

two modified versions of this architecture, BiLSTM 

and GRU units, to predict the trends of the 

degradation of the bearing inside the wind turbine 

using vibration time series data. During the design 

phase of the proposed models, special attention was 

paid to the adjustment of all parameters, such as the 

number of cells in each recurrent layer, the depth of 

the network, and even the training hyperparameters, 

which have a direct impact on prediction 

performance. 

Tuning those parameters can be hard and 

depends widely on experience. Also, RNN can be 

relatively quick to train because it allows one to 

integrate the training process in a Bayesian 

optimization loop by considering the loss as the 

objective function to minimize. This loop is designed 

to compute the best fitting parameters. The results 

obtained show the effectiveness of the proposed 

method which generates more accurate recurrent 

models than those generated using trivial chosen 

training parameters. The Bayesian optimization loop 

is ideal for tuning the training hyperparameters as 

well as the adapted depth and recurrent cell number 

of the networks. The objective function of the 

optimization process is defined as the loss obtained 

by the RNN by computing the gap between the 

experimental and the predicted data. 

The key contributions of this work are threefold: 

✓ investigate several RNN for wind turbine 

prognosis using vibration. 

✓ optimize training hyperparameters used to 

enhance the prediction power of the model. 

✓ optimize the model depth by finding the best 

number of recurrent layers to stack. 

Our paper follows the steps below: An overview 

of the proposed method is presented in section 2. The 

datasets and the pre-processing steps are detailed in 

section 3. The recurrent models employed in this 

research and their optimization are described in 

section 4. We exhumed and discussed the 

experimental results in section 5, and we introduced 

the conclusion and future work in section 6. 

 

2. OVERVIEW OF THE PROPOSED 

METHOD 

 

Industrial system prognosis is the process of 

projecting how long a machine will likely operate 

before it requires predictive maintenance to 

maximize operating efficiency and reduce 

unplanned downtime. Because of this, one of the 

most important goals of predictive maintenance, 

Prognostics, and Health Management (PHM) 

systems is to make an accurate assessment of the 

operational state. 

We use a standard prognostic methodology in 

this study, which includes data import and analysis, 

feature extraction, model design, training and 

forecasting, and performance assessment. We 

investigate several sequence-to-sequence regression 

networks based on RNN memory cells such as 

LSTM to estimate the operating state of a wind 

turbine. The trained models are able to detect 

significant degradation trends and update their 

internal states when a new observation becomes 

available. The entire prognosis workflow is  
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Fig. 1. Overview of the proposed optimization loop 

 

integrated in an optimization loop (Fig. 1) designed 

to tune the RNN attributes like training 

hyperparameters, cell number, and network depth. 

Thus, we investigate several LSTM-like RNN 

predicted performances, such as LSTM, BiLSTM, 

and GRU. 

By keeping a hidden state, every one of those 

recurrent cells learns long-term relations among time 

steps in a time series, conducting additive 

interactions during training, which can aid in 

enhancing gradient flow across longer sequences 

using gradient clipping calculations that prevent 

gradient vanishing/explosion by stabilizing the 

training event at higher learning rates and/or in the 

presence of outliers in the training data [16]. 

However, these recurrent techniques use different 

mechanisms to remember or forget time 

dependencies using gates. We also explore different 

combinations of these recurrent layers by making the 

RNN deeper by inserting extra recurrent layers. This 

technique makes it possible to memorize time 

dependencies in a more sophisticated way. We 

include dropout layers after each recurrent one to 

avoid overfitting. 

 

3. PREPROCESSING DATA 

 

Before the detailed explanation of the proposed 

framework, we present time series data contained in 

the used dataset, collected and presented by the 

authors of [17] from the high-speed shaft of a 2MW 

wind turbine actuated by a 20-tooth pinion gear. On 

each of the 50 days, 50 vibration and tach signals 

lasting 6 seconds were recorded at a sampling 

frequency of 97656 Hz. During the 50-day 

timeframe, an inner race defect occurred, causing the 

bearing to fail. We investigate the data in a time 

domain thought to be good for prognosis purpose. 

First, the vibration signals are shown in the time 

domain. by plotting the 50 vibration and tachometer 

signals stacked one after each other. 

 

 
Fig. 2. Signals in the dataset, over 50 days 

with 6 second per day, a) cumulative 

vibration and b) tachometer 

 

In Fig. 2 we can see the fault severity indicated 

by the progression of color from blue to yellow, 

which reflects the progression of the defect. We also 

discover that the vibration data is noisy and exhibits 

a rising trend in signal impulsivity over time steps. 

The extracted time-domain features from each time 

step, such us kurtosis, form factor, and margin factor, 

can measure the signal impulsive behavior. These 

are promising features for predictive the future of 

wind turbine [18]. 

As mentioned above, the dataset was collected 

over 50 days with 6 seconds per day, giving us 

initially 50 time steps, which is insufficient for the 

networks to understand the data trend. To resolve 

this issue, we consider each second of data as one 

time step, in order to have enough data to train and 

test the proposed RNNs, which results in 300-time 

steps. We proceed by extracting time domain 

features. First, we compute the kurtosis of a time 

series sequence 𝑋 of length 𝑇 (represented by Fig. 3 

a) using the following formula: 

 𝑘 = 𝐸(𝑋 − 𝜇)4 𝜎4⁄ ,  (1) 
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Where 𝜇 is the 𝑇 mean, and 𝜎 is the standard 

deviation of 𝑋, and 𝐸(𝑡) represents the expected 

value of the vibration signal in time 𝑡 ∈ [1: 𝑇]. The 

kurtosis function computes a sample version of this 

population value. Then we compute the second time 

domain feature, which is the shape factor (Fig. 3 b) 

using the formula: 

 𝑠 = 𝑟𝑚𝑠(𝑋) 𝑚𝑒𝑎𝑛(|𝑋|)⁄ ,  (2) 

Lastly, we use the following formula to compute 

the margin factor as illustrated in Fig. 3 c: 

 𝑚 = max⁡(𝑋) 𝑚𝑒𝑎𝑛(|𝑋|)⁄ ,  (3) 

 
Fig. 3. Extracted time domain features, a) 

Kurtosis, b) shape factor and c) Margin factor 

 

3.1. Standardize data 

We normalize the data for training to have zero 

mean and unit variance for a better match and to 

avoid the training from diverging during training. 

Normalization, also known as z-scoring, is a 

common approach to enhance network performance. 

We apply the same standardization parameters as 

training data to the test data.  

The training process can be divergent and 

instable when a network is trained using data 

distributed over a large interval [19]. This is the 

reason why we proceed by standardizing the data by 

computing 𝜇 and standard deviation 𝜎 from the 

training data to standardize both training and testing 

data as follows: 

 𝜎 = √
1

𝑋−1
∑ |𝑋𝑡 − 𝜇|2𝑇

𝑡=1 ,  (4) 

Where 𝜇 is the mean of the sequence, and 𝑋𝑡 the 

time series data in time 𝑡 ∈ [1: 𝑇]. 

 𝜇 =
1

𝑋
∑ 𝑋𝑡

𝑇
𝑡=1 ,  (5) 

Then we can compute the standardized time 

series data 𝑋𝑠 as follow: 

 𝑋𝑠 = (𝑋 − 𝜇)/𝜎,  (6) 

 

3.2. Prepare predictors and responses 

In the forecasting tasks, to test the effectiveness 

of the method, the standard protocol is to split 

available data into two distinct subsets. The first one, 

composed of the starting part of the data, is used to 

train the network. The networks can establish long-

term relationships across training data and fit the 

data trends during the training phase. The second 

subset is used as metric data to compute the gap 

between this actual subset and the predicted values. 

We decided to use the first 90% of the time steps for 

the training and the last 10% for the testing. 

A sequence-to-sequence regression technique is 

used to predict the values of future time steps in time 

series data. So, the output (label) vector is the same 

as the training sequence vector but with values 

pushed forward one time step. That is, at each time 

step of the input sequence, the RNNs learn to predict 

the value of the next time step. And we perform the 

same process with testing data. 

 𝑋𝑠 = 𝑋𝑠(1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋𝑠) − 1),  (7) 

 𝑙𝑎𝑏𝑒𝑙 = 𝑋𝑠(2: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋𝑠)),  (8) 

The main idea is to forecast the values of future 

time steps in a sequence using training sequences 

with values shifted by one time step as replies. As a 

result, the RNN may learn to anticipate the value of 

the next time step for each time step of the input 

sequence and modify the network state with fresh 

incoming data for each time step of the input 

sequence. 

 

4. DEFINE THE RNNs ARCHITECTURES 

 

In this work, we investigate prediction accuracies 

obtained by several types of RNNs, trained using 

optimized hyperparameters. So, we choose to design 

an LSTM [20] based RNN. An LSTM unit can learn 

dependencies in long time series data, to a deeper 

version of LSTM obtained by stacking two or more 

LSTM layers [21] to effectively deal with more long-

term temporal dependencies inside the data. To 

prevent overfitting, we insert dropout layers after 

each of the LSTM layers. 

We also implemented the Bidirectional LSTM or 

BiLSTM [22], and a deeper version of BiLSTM, 

which, in the same way as classic LSTM, can 

remember dependencies between long sequences but 

in both directions, from the beginning of the 

sequence to the end and vice versa. BiLSTM is an 

enhanced version of LSTM by encapsulating two 

LSTM cells. The first cell learns from the original 

input sequence, while the second one uses the 

sequence in reversed order. This technique can give 

more information about the context of the sequence. 

Similar to the LSTM cell, we also introduced the 

GRU cell in [23]. Like the two first models, the GRU 

cell allows to learn temporal structure in time series 

but ureses a simpler mechanism to update and forget 

dependencies between time steps. 

 

4.1. Mathematical description of the used RNNs 

As mentioned above, both BiLSTM and GRU are 

modified versions of the basic LSTM model. In this 

section we survey the mathematical fundaments of 

these methods and how the memory cells can choose 

information to remember and those to forget. 
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Fig. 4. Main recurrent cells internal 

structures, a) LSTM, b) GRU and c) BiLSTM 

 

a) LSTM 

The LSTM cell can keep long-term dependencies 

among time steps in time series data by storing 

information learnt from prior time steps in its 

internal state. At each time step, the state is updated 

by adding or removing information using gates.  

The internal construction of an LSTM cell is 

depicted in Fig. 4 a, showing the three gates: the 

input, the output, the forget gate, and the hidden state 

cell. The three gates are responsible for regulating 

the flow of data and deciding to store significant 

information while forgetting unimportant 

information. LSTM performs well for time series 

prediction. The advent of LSTM has solved two 

major problems that RNNs face: vanishing and 

exploding gradients. By applying the next equation 

to 𝑋𝑡 the time series data, where 𝑡 ∈ [1: 𝑇], we can 

determine the hidden cell state 𝐶𝑡 and the current 

output vector 𝐻𝑡  of the LSTM cell using an input 

sequence 𝑋𝑡 of length 𝑇. 

 𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 ⊙ 𝐺𝑡 ,  (9) 

 𝐻𝑡 = 𝑂𝑡 ⊙ tanh(𝐶𝑡),  (10) 

To update the hidden state, we use the tanh 

activation function, where ⊙⁡represents the element-

wise product: 

 tanh(𝑋) =
sinh(𝑋)

cosh(𝑋)
=

𝑒2𝑋−1

𝑒2X−1
,  (11) 

And we apply sigmoid activation function to the 

gates: 

 σ(x) = (1 + 𝑒−𝑋)−1,  (12) 

The input gate, forget gate, cell input, and output 

gate are denoted by 𝐼, 𝐹, 𝐺 and 𝑂, respectively, for 

each element at time step 𝑡, the following equation 

is used: 

The input gate 𝐼𝑡 that control level of update: 

 𝐼𝑡 = σ(𝑊𝑖 . 𝑋𝑡 + 𝑅𝑖𝐻𝑡−1 + 𝑏𝑖),  (13) 

The forget gate 𝐹𝑡 that control the data to forget: 

 𝐼𝑡 = σ(𝑊𝑖 . 𝑋𝑡 + 𝑅𝑖𝐻𝑡−1 + 𝑏𝑖),  (14) 

The input 𝐺𝑡 that add information to keep: 

 𝐺𝑡 = σ(𝑊𝑔. 𝑋𝑡 + 𝑅𝑔𝐻𝑡−1 + 𝑏𝑔),  (15) 

We update the output state by adding a part of 

data of the cell state defined by the output gate 𝑂𝑡as 

fellow: 

 𝑂𝑡 = σ(𝑊𝑜 . 𝑋𝑡 + 𝑅𝑜𝑋𝑡−1 + 𝑏𝑜),  (16) 

The learnable parameters of the LSTM cell are 

optimized during the training process, comprising 

weights 𝑊, the recurrent weights 𝑅 and the bias 𝑏 of 

each gate. 

 

b) GRU 

Even the GRU cells (Fig. 4 b) are similar to 

LSTM in that they use gates, but they have fewer 

parameters than LSTM since they don't have an 

output gate. GRU's performance on music and voice 

modelling tasks was found to be equal to that of 

LSTM. On some smaller datasets, GRU has been 

found to perform even better. As a result, it is a 

widely used and simplified LSTM cell. The 

following equation is used to update the GRU cell's 

hidden state: 

 𝐻𝑡 = (1 − 𝑍𝑡) ⊙ 𝐻𝑡 + 𝑍𝑡 ⊙ 𝐻𝑡−1,  (17) 

To update the gate, we use the following 

equation, which determines how much the GRU unit 

is updated: 

 𝑍𝑡 = σ(𝑊𝑧 . 𝑋𝑡 + 𝑅𝑧𝐻𝑡−1 + 𝑏𝑧),  (18) 

The reset gate is calculated in the same way as 

the update gate, with the following expression: 

 𝑅𝑡 = σ(𝑊𝑟 . 𝑋𝑡 + 𝑅𝑟𝐻𝑡−1 + 𝑏𝑟),  (19) 

By applying the hyperbolic 𝑡𝑎𝑛 function to the 

reset gate, which is defined by the following 

function, a new remember gate is made: 

 𝐻𝑡 = tanh(𝑊ℎ. 𝑋𝑡 + (𝑅𝑡 ⊙ 𝐻𝑡−1)𝑅ℎ + 𝑏ℎ), (20) 

When, the time series of input 𝑋𝑡 weights 𝑊, the 

recurrent weights 𝑅 and the bias 𝑏 of each 

component 𝑍, 𝑅 and 𝐻, are respectively, the 

learnable weights of the GRU cell, optimized over 

network training. 

 

c) BiLSTM 

We use BiLSTM to understand data in two 

directions, from the beginning to the end, and vice 

versa, because it runs the inputs in two directions, 

one from past to future and the other from future to 

past. What distinguishes this approach from 

unidirectional is that the LSTM that runs backwards 

preserves information from the future, whereas the 

BiLSTM encapsulates two cells, which can 

remember information from both directions of time 

at any point in time. We can see in Fig. 4 c the 

BiLSTM cell internal structure. The forward, 

backward, and output sequences are managed using 

the following formulas: 

 𝐻⃗⃗ 𝑡 = σ(𝑊ℎ⃗⃗ . 𝑋𝑡 + 𝐻⃗⃗ 𝑡−1𝑅ℎ⃗⃗ + 𝑏ℎ⃗⃗ ),  (21) 

 𝐻⃗⃗⃖𝑡 = σ(𝑊ℎ⃗⃗⃖ . 𝑋𝑡 + 𝐻⃗⃗ 𝑡−1𝑅ℎ⃗⃗⃖ + 𝑏ℎ⃗⃗⃖),  (22) 

 𝑌𝑡 = 𝐻⃗⃗ 𝑡 .𝑊𝑦 + 𝐻⃗⃗⃖𝑡𝑊𝑦 + 𝑏𝑦),  (23) 

Where σ represent the sigmoid function. The 

BiLSTM is useful in cases when data context is 
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required. It has been frequently utilized in 

classification and in forecasting [24]. 

 

4.2. Used loss function 

As mentioned above, forecasting time series data 

is mainly a sequence-to-sequence regression. The 

most adequate loss function used in regression 

problems is defined as the Mean Absolute Error 

(MAE) loss. This is the average of the absolute error 

of the forecasted values compared to actual values 

over the mini-batch for each time step. This loss 

function is used to update learnable weights from all 

layers of the network during the learning process by 

backpropagation: 

 MAE =
1

𝑇
∑ |𝑋𝑡 − 𝑌𝑡|

𝑇
𝑡=1 ,  (24) 

Where 𝑋𝑡 is the true values and 𝑌𝑡 is the predicted 

values, 𝑇 is the length of the considered sequence. 

The learnable parameters are initialized 

randomly at the beginning of the training, but 

currently the state of the art in the matter offers 

several methods to do it. The choice of the 

initialization method can have an important impact 

on how well the network trains. Hence, we choose to 

initialize weights and bias in all learnable layers 

using the method described in [25]. This gives the 

best results. In this method, the authors resolve the 

problem of exploding/vanishing gradient in the 

learnable layer by multiplying weights obtained 

from random initialization by a specific factor, as: 

 𝑊𝑙 = random(𝑠𝑖𝑧𝑒𝑙 , 𝑠𝑖𝑧𝑒𝑙−1)√
2

𝑠𝑖𝑧𝑒𝑙−1,  (25) 

 

4.3. Studied RNNs 

As cited above, in this study we will explore the 

three main recurrent cell types, which are LSTM, 

BiLSTM, and GRU. Each type is presented in a 

simple form with a single recurrent layer, which will 

be used to memorize the temporal dependencies 

between time steps, as well as a deeper version with 

the stacking of two recurrent layers, serving to 

memorize more sophisticated relations between the 

time steps. Initially, we study the following six 

architectures in Table 1: 

 
Table 1. Six studied recurrent architectures 

LSTM BiLSTM GRU 
Deep 

LSTM 

Deep 

BiLSTM 

Deep 

GRU 
input input input input input Input 

recurrent 

cell1 

recurrent 

cell1 

recurrent 

cell1 

recurrent 

cell1 

recurrent 

cell1 

recurrent 

cell1 

fully 

connected 

fully 

connected 

fully 

connected 

recurrent 

cell2 

recurrent 

cell2 

recurrent 

cell2 

mae 

regression 

mae 

regression 

mae 

regression 
dropout dropout Dropout 

   
fully 

connected 

fully 

connected 

fully 

connected 

   
mae 

regression 

mae 

regression 

mae 
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In a second step, this configuration is reproduced 

to build deeper networks inside the Bayesian 

optimization loop by stacking several recurrent 

layers separated by dropout layers in order to avoid 

overfitting. A dropout layer sets random elements 

from the input to zero with some probability [26]. 

 

4.4. Training hyperparameters 

For the first time, to highlight the prediction 

improvement by using optimal hyperparameters, we 

start by exploring the forecasting of six networks that 

contain only one or two LSTM, BiLSTM, and GRU 

layers. Trained using default hyperparameters, we 

specify fixed values for all the training 

hyperparameters. We set the training optimizer to 

ADAM (ADAptive Moment estimation) [27], which 

is a type of Stochastic Gradient Descent with 

Momentum (SGDM) using an automatically adapted 

learning rate by a specific momentum term, and we 

train for 200 epochs. The learning rate can have a 

direct impact on the convergence and the speed of 

the network. we decided to set it to 0.05 and we plan 

to drop this value by a factor of 0.2 during the 

training progress to keep stability of the training. We 

summarize the hyperparameters used to perform the 

training process, as well as the properties of 

recurrent cell numbers, in the following Table 2. 

 
Table 2. Recurrent cells number and training 

hyperparameters 

Parameter Value 

training optimizer ADAM 

recurrent cell1 10 

recurrent cell2 20 

dropout 0.2 

training epochs 200 

initial learning rate 0.05 

L2Regularization 10-4 

approach with a gradient threshold L2norm 

gradient threshold 1 

drop learning rate epochs 100 

 

To monitor the effectiveness of the training 

process, we plot the training loss of every network. 

We extract the training loss stacked during the 

training process for every epoch. For each of the 

networks, we plot the epoch numbers against the 

validation loss. 

 
Fig. 5. Validation loss over epochs of the 

proposed RNNs 

 

Fig. 5 shows the evolution of the loss function of 

shallow and deep LSTM, BiLSTM, and GRU 

networks during the training stage as a function of 

the number of epochs. It can be observed that all of 

the models converge quickly, with the GRU being 

the fastest, followed by deep GRU. This is mostly 
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due to the GRU being a basic model with fewer 

computational parameters than LSTM and BiLSTM. 

 

5. RESULTS AND DISCUSSION 

 

The most important elements for evaluating a 

forecasting system’s performance are twofold: first, 

we can observe the activations inside a recurrent cell 

to evaluate the robustness of the training process; 

and second, we can use metrics to quantify these 

performances; the most common is the Root Mean 

Square Error (RMSE). It shows how well the 

observed data matches the expected values. Lower 

RMSE values imply better fit. 

 

5.1. Visualize network activations 

We can see the network's learnt features by 

computing the recurrent layer's activations for each 

time step of the sequences. we note that before the 

training the parameters were initialized randomly. 

 

 
Fig. 6. Activation visualization of one trained 

RNNs 

 

The heatmap in Fig. 6 represents the activation of 

the GRU-based neural network with a single 

recurrent layer. We can notice that the activations 

fluctuate over time, implying that the cell weights 

are adjusted in response to data fluctuations. 

 

5.2. Errors metrics of the recurrent model 

To compare the performances of the trained 

models, we must quantify the gap between the real 

and predicted values. We compute two quantitative 

measurements, which are Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE). And the 

qualitative one, which is the Mean Absolute 

Percentage Error (MAPE), by comparing the testing 

dataset by comparing unstandardized prediction 

data. 

 RMSE = √∑
(𝑋𝑡−𝑌𝑡)

2

𝑇

𝑇
𝑡=1 ,  (26) 

Where 𝑋𝑡 is the true values and 𝑌𝑡 is the predicted 

values, 𝑇 is the length of the considered sequence. 

Unlike RMSE, MAE described by formula (24) 

allows to reduce the effects of outliers or incorrectly 

forecasted points. While the absolute error metrics 

RMSE and MAE presented above are on the same 

scale as the data (case number), MAPE quantifies the 

relative percentage error and can provide a clearer 

view on each network’s performance. MAPE is 

computed by taking the mean of the individual 

forecast point errors divided by the actual value. 

 MAPE =
100

𝑇
∑ |

𝑋𝑡−𝑌𝑡

𝑋𝑡
|𝑇

𝑡=1 ,  (27) 

Absolute and relative metrics are computed from 

the unstandardized testing data compared to the best 

predictions. We can forecast the next time step for 

each prediction by utilizing the actual data from the 

previous time step. Before computing the metrics, 

we unstandardized the test dataset and the 

predictions by using the same standardization factors 

that we had already found from training subset. 

 

5.3. Discussion of results 

The quality of the prediction will now be 

evaluated using the testing dataset that was not 

included in the training process. The testing data 

encompasses 10% of the total data, which includes 

the three time-domain features extracted from the 

vibration data. In Table 3 and Fig. 7, we compute the 

RMSE of the six proposed models for each of the 

three classes in the dataset. As a first remark, we can 

notice the models containing a single recurrent layer 

perform better than those with a deeper architecture. 

This is mainly due to the limited data sequence used 

for training the networks. Also, the GRU-based 

models perform better due to their simple forecasting 

mechanism, well adapted to short data sequences. 

 
Table 3. RMSE of the RNNs 

 
LSTM BiLSTM GRU 

Deep 

LSTM 

Deep 

BiLSTM 

Deep 

GRU 

Kurtosis 0.1369 0.2246 0.0805 0.2117 0.2935 0.1181 

Shape 

factor 
0.0043 0.0104 0.0053 0.0089 0.0127 0.0067 

Margin 

factor 
0.1318 0.0946 0.1135 0.0471 0.1113 0.1133 

Sum 0.2730 0.3296 0.1993 0.2677 0.4175 0.2380 

 
Table 4. MAE of the RNNs 

 
LSTM BiLSTM GRU 

Deep 

LSTM 

Deep 

BiLSTM 

Deep 

GRU 

Kurtosis 0.1158 0.1597 0.0580 0.1385 0.1813 0.0757 

Shape 

factor 
0.0038 0.0072 0.0037 0.0055 0.0080 0.0043 

Margin 

factor 
0.1114 0.0837 0.0930 0.0399 0.0971 0.0877 

Sum 0.2309 0.2506 0.1547 0.1838 0.2864 0.1677 

 
Table 5. MAPE of the RNNs (in %) 

 
LSTM BiLSTM GRU 

Deep 

LSTM 

Deep 

BiLSTM 

Deep 

GRU 

Kurtosis 2.6794 3.6482 1.3196 3.1452 4.1052 1.7123 

Shape 

factor 
0.2889 0.5524 0.2834 0.4175 0.6117 0.3264 

Margin 

factor 
2.5969 2.0330 2.2730 0.9447 2.3447 2.1843 

Sum 5.5652 6.2336 3.8760 4.5074 7.0616 4.2230 

 

These tendencies are confirmed using the MAE 

and the MAPE metrics illustrated in Table 4 and 

Table 5 each (graphically in Fig. 8 and Fig. 9). With 

3.8760% of prediction errors, the GRU is in the first 

position, followed by the deep GRU with 4.2230%. 

We note that although the fact of increasing the 

number of recurrent layers in a network should 

normally give a better result given the possibility of 

memorizing long sequences with more precision, we 
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see that this is not the case in this experiment. In our 

opinion, this degradation in the performance of the 

deep models is due to the trivial choice of the 

training hyperparameters as well as the number of 

cells that each layer must contain. 

 
Fig. 7. RMSE comparison (values) 

 
Fig. 8. MAE comparison (values) 

 
Fig. 9. MAPE comparison (%) 

 

In Fig. 10, we compare side by side the actual 

values and the predicted values. We note that all the 

models have been able to capture the trend of the 

data. To examine in a more precise way the learning 

of the dynamics of the data, we consult Fig. 11-16, 

which show an overlay of the actual data and the 

predicted ones, with a calculation of the prediction 

errors for each time step. The trends observed 

previously are confirmed. The network based on 

GRU learns the dynamics of the data. We also note 

that the LSTM model is also efficient, while the deep 

networks are all below expectations. 

 

 
Fig. 10. The training data with the forecasted 

values 

 

 
Fig. 11. Values predicted by LSTM, as well 

as testing data and the related MAPE 

 

 
Fig. 12. Values predicted by BiLSTM, as well as 

testing data and the related MAPEE 

 

 
Fig. 13. Values predicted by GRU, as well as 

testing data and the related MAPE 
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Fig. 14. Values predicted by deep LSTM, as 

well as testing data and the related MAPE 

 

 
Fig. 15. Values predicted by deep BiLSTM, 

as well as testing data and the related MAPE 

 

 
Fig. 16. Values predicted by deep GRU, as 

well as testing data and the related MAPE 

 

In comparison to the other evaluated models, the 

GRU-based method delivers improved predictions, 

as seen in Fig. 13. The metrics MAE, RMSE, and 

MAPE values calculated based on the prediction and 

reported in Table 3, 4 and 5 were used to evaluate 

the obtained results quantitatively and qualitatively. 

It is clear that the GRU model with one recurrent 

layer outperforms the others in terms of predicting 

performance, with reduced RMSE, MAE, and 

MAPE error metrics. 

 

5.4. Network parameters optimization 

We must provide the architecture (depth) and 

also the training hyperparameters while training a 

RNN. Adjusting these settings is a challenging 

ongoing process that requires the designer's 

expertise. The optimization process can help us find 

the best fit parameters. In this context, we find that 

Bayesian optimization is well adapted to optimize 

black box functions that are time-consuming to 

evaluate, like the deep learning training process. The 

optimization algorithm keeps track of the objective 

function's Gaussian process model and trains it with 

objective function evaluations. 

Because the evolution of the objective function is 

stochastic, the Bayesian method considers it as a 

random function and applies a prior to it. Which can 

encode the function's behavior after accumulating 

the function evaluations, which are treated as data. 

Then, the prior is modified to create the posterior 

distribution over the objective function. This 

posterior distribution is utilized to generate an 

acquisition function that specifies the query point for 

the next iteration. There are several approaches to 

defining the prior/posterior distribution over the 

objective function. Gaussian processes are used in 

the most prevalent two approaches. It creates a 

surrogate for the objective function, utilizes a 

Bayesian machine learning approach called 

Gaussian process regression to quantify the 

uncertainty in that surrogate, and then utilizes an 

acquisition function created from the surrogate to 

select wherever to sample. The Bayesian 

optimization method uses Gaussian process 

regression and three common acquisition functions: 

predicted improvement, entropy search, and 

knowledge gradient. 

We choose to optimize three parameters; one 

training hyperparameter, which is the learning rate; 

and two parameters relative to the design of the 

network. We optimize the number of the stacked 

recurrent layers (depth) and the number of recurrent 

cells in each one. 

The network has three sections. The first one is 

composed of a sequence input layer. The second 

contains a recurrent layer followed by a dropout 

layer. This section is used to control the network 

depth by repeating it several times according to 

depth value. The last section has a fully connected 

layer. At the top there is a regression layer to 

compute loss. 

 
Table 6. Parameter optimization ranges and search 

space 

Parameter Range Search space 

Initial learning rate 0.001-0.5 log 

Cell number 10-60 integer 

Network depth 1-6 integer 

Objective evaluation 

iteration 
1200 / 

 

Then, we define the objective function to be 

minimized, this function is the sum of the MAPE 

predictions errors of the three classes defined as 

follow: 

 𝑓(𝑐𝑒𝑙𝑙, 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒) =

arg⁡min
𝑐𝑒𝑙𝑙,𝑑𝑒𝑝𝑡ℎ,𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒

∑ 𝑀𝐴𝑃𝐸𝑖
3
𝑖=1 ,  (28) 

Were 𝑖 ∈
{𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, shapefactor,marginfactor}, 𝑐𝑒𝑙𝑙 ∈
{10,11, … ,60}, 𝑑𝑒𝑝𝑡ℎ ∈
{1,2, … ,6}, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∈ [0.001,0.5], 
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In Table 6, we define the searching ranges, the 

types of the variables (integer, categorical, or real) 

and the search space transformation (linear or 

logarithmic) for the three optimization variables. 

The optimization process is performed for 1200 

iterations. 

In Table 7 and in Fig. 17, we can find the results 

of the optimization process after performing 134 

iterations. Get by the best scored RNN is composed 

of 2 recurrent layers, using 34 cells in the first one 

and 14 in the second layer. With learning rate set to 

0.0369, we can get the best objective function of 

1.8505% which is the sum of relative errors in all 

classes. This prediction result is significantly more 

accurate than the MAPE given by the best non 

optimized GRU network, with 3.8760% of 

prediction errors as shown in the previous section. 

 
Table 7. Values offering the best objective function 

compared to the best non optimized network 

Network Depth Cell1 Cell2 

Initial 

learning 

rate 

Best fit 

(MAPE) 

Optimized 2 34 14 0.0369 1.8505% 

GRU 1 10 / 0.05 3.8760% 

 

 
Fig. 17. Optimization parameters and best fit 

 

6. CONCLUSION AND FUTURE WORK 

 

In this work, we further studied the use of 

recurrent neural networks in the prediction and 

prognosis of the operational state of a wind turbine. 

We mainly based our study on the models derived 

from LSTM, all of which includes a cell memorizing 

long-term temporary dependencies. This cell is 

updated using gates. This investigation showed us 

the power of these tools in predicting time series data 

trends. We also explored architectures comprising 

several stacked recurrent layers able to learn more 

complex data dependencies over time. 

Even though there isn’t a lot of data available and 

it doesn’t cover a long period of the time, the 

proposed models still manage to capture the 

dynamics and trends of the wind turbine’s operating 

condition getting worse. We find that the most 

accurate predictions are made by GRU-based 

networks, which, despite having a simpler decision 

system then traditional LSTMs, are better at learning 

and capturing data trends. 

Before training a network, the design and 

definition of hyperparameters is a very important 

step which will directly impact the predictive 

performance of the model. This phase is often 

problematic and depends on the experience of the 

designer. Using Bayesian optimization loop to 

effectively tune those parameters gives significant 

enhancement of the accuracy of the prediction. In 

light of this fact, we plan to conduct further studies 

on the optimization of network architecture 

parameters like network depth and the training 

hyperparameters using more complex optimization 

algorithms like particle swarm or genetic 

optimization. Taking the optimal parameters can 

significantly improve the performance of the 

network. 

Another very promising avenue is to include 

feature extraction steps in network layers to link an 

end-to-end architecture and thus avoid bottlenecks in 

data processing. This type of layer can integrate 

several types of features, such as the Fourier 

transform, the spectrogram, and the wavelet. 
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