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Abstract 

A point mass added to a plate may have a significant effect on its linear and nonlinear dynamics, including 

frequencies, mode shapes and the forced response to external loading. In the present paper, a simply supported 

clamped simply supported clamped rectangular plate (SCSCRP) carrying a point mass is examined. The 

expressions for the kinetic, linear and non-linear strain energies are derived by taking into account the effect of 

the added mass on the kinetic energy and the effect of the membrane forces induced by the non-linearity on the 

strain energy. The discretization of these expressions makes the mass tensor, the linear and non-linear rigidity 

tensors appear in a non-linear algebraic multimode amplitude equation, the iterative solution of which permit 

to obtain, in the neighborhood of the first non-linear mode, the basic SCSCRP function amplitude dependent 

contribution coefficients. Nonlinear frequency response functions have been obtained for the first time, based 

on an iterative numerical solution in each case of the associated complete set of nonlinear algebraic equations. 

Such new results are useful for a better qualitative understanding allowing an optimal dynamic design of the 

rectangular plates with added masses. 
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1. INTRODUCTION 

 

The study of plate vibrations has been for a long 

time a subject of a great and continuous interest for 

researchers around the globe.  Various geometries, 

boundary conditions and types of material properties 

are currently examined in order to guide designers 

and engineers working in structural dynamics. The 

effect of added masses on plate vibrations is of a 

crucial importance in many practical situations, 

because of the changes this induces in the plate 

natural frequencies, mode shapes and associated 

stress patterns, which may result in unexpected 

changes in the vibration manner of a SCSCRP.  The 

case of simply supported clamped simply supported 

clamped rectangular plates (SCSCRP) carrying a 

point mass has been studied by [1] K. H. Low et al 

who examined a flat rectangular plate with mass 

components at random locations using the 

Rayleigh’s energy approach, combined with 

experimental measurements and a finite element 

analysis.  It was found that the fundamental 

frequency of the SCSCRP decreases with increasing 

the mass ratio and increases when the mass is located 

away from the plate center. The comparison of the 

results with those obtained experimentally showed a 

relatively good agreement. [2] G. B. Chai 

investigated the same subject using the Rayleigh-

Ritz method with multi-term trigonometric 
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functions. One-term solution was found good 

enough only if the point mass is placed at the plate 

center. [3] K. H. Low and his co-authors made 

comparisons of the frequencies of plates with added 

masses and various BC obtained theoretically by the 

Rayleigh-Ritz approach, and experimentally by a 

spectrum analysis and found that the analytical 

method can predict accurately the frequencies for 

one added mass.  For more masses and higher 

modes, it was suggested to use more functions for 

better estimations. [4] Z. Beidouri et al investigated 

the geometrically non-linear transverse vibration of 

a rectangular plate, simply supported at three edges 

and clamped at one edge. The model based on 

Hamilton’s principle and spectral analysis used in 

[5][6] was slightly modified to determine the 

frequency and mode shapes amplitude dependence 

for different plate aspect ratios. [7] Ding Zhou and 

Tianjian Ji studied a plate simply supported at two 

opposite edges and elastically supported along the 

other edges and attached to spring masses using an 

exact analytical solution leading to very accurate 

results. [8] Chai Gin Boay is studied free vibrations 

of rectangular plates with and without an added 

mass, and combinations of simply supported and 

clamped edges.  To determine the modified natural 

frequencies, the Rayleigh-energy method with a 

single trigonometric function was used.  Also, 

experimental results were given for SCSCRP 
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carrying a point mass. It was found that the predicted 

first natural frequency of SCSCRP carrying a centric 

mass was in a good agreement with the 

measurements, while that of a plate with an added 

eccentric mass was not well predicted. [9] A. J. 

Mcmillan and A. J. Keane presented a new approach 

to the vibration control over a wide frequency range 

and showed it to be possible to reach a bunch of 

vibration isolation with small added masses. [10] A. 

W. Leissa considered free vibrations of rectangular 

plates with a mixture of free, simply supported and 

clamped edge conditions. [11] J-S Wu et al studied 

free vibrations of rectangular plates with three types 

of added concentrated elements using different 

approaches and compared the results with those 

based on the finite element method.  [12] R. G. 

Jacquot and W. Soedel dealt with the vibrations of 

structures carrying discrete dynamic systems at 

discrete points. [13] P. A. A. Laura et al studied the 

behavior of beams and plates carrying elastically a 

mass. [14] A. D. Kiureghian et al dealt with the 

dynamic behavior of a structure attached with a light 

equipment by perturbation methods. [15] Q.S. Li 

studied free vibrations of a rectangular plate with 

two opposite edges simply-supported carrying a line 

of concentrated masses or elastic line-supports using 

an exact approach. [16] H. Fakhreddine et al 

investigated the vibrations of non-linear forced 

vibration of a beam with added masses, they found 

that the stress increases with increasing the mass 

ratio and decreases close to the clamps. [17] D. 

Wang and M.I. Friswell analyzed the minimum 

support stiffness in order to rise the plate natural 

frequency and found the optimal attachment point 

and the related minimum stiffness. [18] P. 

Mahadevaswamy and B.S. Suresh dealt 

experimentally with the transverse vibrations of a 

clamped plate by vibratory flap excited harmonically 

and then compared his results with those based on a 

finite element analysis. [19] P.A. Martin and A. J. 

Hull studied the dynamic response of a thin plate 

carrying concentrated masses in linear regime and 

the results were compared to finite element 

computations. [20] X. Pang et al developed a new 

model for non-linear eigenvalue problem of the 

vibrations of a plate with elastically added masses. 

In this paper, non-linear vibrations of a SCSCRP 

carrying an added point mass are investigated.  First, 

comparisons of the natural frequencies of plates 

without and with an added mass are made. Then, the 

fundamental non-linear modes of various plates are 

given and compared to the linear ones, and new 

backbone curves indicating the effect of the added 

mass on the hardening type of non-linearity of 

SCSCRP are displayed. Then, the non-linear 

frequency response function of a SCSCRP carrying 

a point mass is presented for a wide frequency range. 

 

2. NUMERICAL FORMULATION 

 

Consider transverse vibrations of the SCSCRP 

carrying a point mass shown in Fig. 1. The plate 

membrane strain energy 𝑉𝑎induced by large 

vibration amplitudes can be written as in [5]: 

𝑉𝑎 =
3𝐷

2𝐻2 ∫ [(
𝜕𝑊

𝜕𝑥
)
2

+ (
𝜕𝑊

𝜕𝑦
)
2

]
2

𝑑𝑆           (1) 

𝐷 is the bending stiffness 𝐷 =
𝐸𝐻3

12(1−𝜈2)
 and 𝑑𝑠 =

𝑑𝑥𝑑𝑦 is the elementary plate area, 𝐻 is the plate 

thickness. The plate bending strain energy 𝑉𝑏 is 

given by: 

𝑉𝑏 =
1

2
∫𝐷 [(

𝜕2𝑊

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
)
2

+ 2(1 − 𝜈) ((
𝜕2𝑊

𝜕𝑥𝜕𝑦
)
2

−

𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2
)] 𝑑𝑆                (2) 

 
Fig. 1. The notation for a SCSCRP with  

an added mass 

 

The kinetic energy 𝑇 of the plate and the added 

mass is: 

𝑇 =
1

2
𝜌𝐻 ∫(

𝜕𝑊

𝜕𝑡
)
2

𝑑𝑥𝑑𝑦 +
1

2
𝑚(

𝜕𝑊(𝑥0,𝑦0)

𝜕𝑡
)
2

     (3) 

If the space and time functions are supposed to 

be separable, the time supposed to be harmonic and 

the space term 𝑤(𝑥, 𝑦) expanded in the form of a 

finite series, the transverse displacement function 𝑊 

can be written as: 

𝑊(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦) sin(𝜔𝑡) =
𝑎𝑘𝑤𝑘(𝑥, 𝑦) sin𝜔t = 𝑎𝑖𝑗𝑤𝑖𝑗(x, y)sin⁡(𝜔t)            (4) 

 

The functions 𝑤𝑖𝑗(𝑥, 𝑦)are obtained as products 

of x and y simply supported and clamped beam 

functions𝑓𝑖(𝑥) and  𝑔𝑗(𝑦): 

𝑤𝑖𝑗(𝑥, 𝑦) = 𝑓𝑖(𝑥)𝑔𝑗(𝑦)                    (5) 

The kinetic, membrane and bending strain energy 

expressions become after discretization: 

𝑉𝑎 =
1

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙 sin

4(𝜔𝑡)              (6)  

𝑉𝑏 =
1

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗 sin

2(𝜔𝑡)                   (7) 

𝑇 =
1

2
𝜔2𝑎𝑖𝑎𝑗𝑚𝑖𝑗 cos

2(𝜔𝑡)                 (8) 

With 𝑏𝑖𝑗𝑘𝑙  , 𝑘𝑖𝑗 and 𝑚𝑖𝑗 are the geometrical non-

linearity, rigidity and mass tensors given by: 

𝑏𝑖𝑗𝑘𝑙 =
3𝐷

𝐻2
∫(

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑗

𝜕𝑥
+
𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑗

𝜕𝑦
) (

𝜕𝑤𝑘

𝜕𝑥

𝜕𝑤𝑙

𝜕𝑥

+
𝜕𝑤𝑘

𝜕𝑦

𝜕𝑤𝑙

𝜕𝑦
) 𝑑𝑥𝑑𝑦 

𝑘𝑖𝑗 = ∫𝐷 [(
𝜕2𝑤𝑖

𝜕𝑥2
+

𝜕2𝑤𝑖

𝜕𝑦2
) (

𝜕2𝑤𝑗

𝜕𝑥2
+

𝜕2𝑤𝑗

𝜕𝑦2
) + 2(1 −

𝜈) (
𝜕2𝑊𝑖

𝜕𝑥𝜕𝑦

𝜕2𝑊𝑗

𝜕𝑥𝜕𝑦
−

𝜕2𝑊𝑖

𝜕𝑥2

𝜕2𝑊𝑗

𝜕𝑦2
)] 𝑑𝑥𝑑𝑦        (9) 
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𝑚𝑖𝑗 = 𝜌𝐻 ∫𝑤𝑖𝑤𝑗 𝑑𝑥𝑑𝑦 + 𝑚𝑤𝑖(𝑥0, 𝑦0)𝑤𝑗(𝑥0, 𝑦0) 

(10) 

Non-dimensional parameters are defined by: 

𝑤𝑖(𝑥, 𝑦) = 𝐻𝑤∗
𝑖 (

𝑥

𝑎
,
𝑦

𝑏
) = 𝐻𝑤∗

𝑖(𝑥
∗, 𝑦∗)      (11) 

a and b being the plate length and width along the 𝑥 

and 𝑦 axes. The previous tensors can be written as: 

𝑏∗𝑖𝑗𝑘𝑙 = 3∫ (𝛼2 𝜕𝑤∗
𝑖

𝜕𝑥∗

𝜕𝑤∗
𝑗

𝜕𝑥∗
+

𝜕𝑤∗
𝑖

𝜕𝑦∗

𝜕𝑤∗
𝑗

𝜕𝑦∗
) (𝛼2 𝜕𝑤∗

𝑘

𝜕𝑥∗

𝜕𝑤∗
𝑙

𝜕𝑥∗
+

𝜕𝑤∗
𝑘

𝜕𝑦∗

𝜕𝑤∗
𝑙

𝜕𝑦∗
) 𝑑𝑥∗𝑑𝑦∗    (12) 

𝑘∗𝑖𝑗 = ∫(𝛼2 𝜕2𝑤∗
𝑖

𝜕𝑥∗2
+

𝜕2𝑤∗
𝑖

𝜕𝑦∗2
) (𝛼2 𝜕2𝑤∗

𝑗

𝜕𝑥∗2
+

𝜕2𝑤∗
𝑗

𝜕𝑦∗2
) +

2(1 − 𝜈)𝛼2 (
𝜕2𝑤∗

𝑖

𝜕𝑥𝜕𝑦

𝜕2𝑤∗
𝑗

𝜕𝑥𝜕𝑦
−

𝜕2𝑤∗
𝑖

𝜕𝑥2

𝜕2𝑤∗
𝑗

𝜕𝑦2
) 𝑑𝑥∗𝑑𝑦∗ (13) 

𝑚∗
𝑖𝑗 = ∫𝑤∗

𝑖𝑤
∗
𝑗 𝑑𝑥

∗𝑑𝑦∗ +

𝜂𝑤∗
𝑖(𝑥

∗
0, 𝑦

∗
0
)𝑤∗

𝑗
(𝑥∗0, 𝑦

∗
0
)                             (14) 

𝜂⁡is the ratio of the added mass to the plate total mass 

𝜂 =
𝑚

𝜌𝐻𝑎𝑏
  and 𝛼 is the plate aspect ratio 𝛼 =

𝑏

𝑎
. The 

relationship between non-dimensional and 

dimensional tensors are: 

𝑏𝑖𝑗𝑘𝑙 =
𝐷𝑎𝐻2

𝑏3
𝑏∗𝑖𝑗𝑘𝑙                    (15) 

𝑘𝑖𝑗 =
𝐷𝑎𝐻2

𝑏3
𝑘∗𝑖𝑗                       (16) 

𝑚𝑖𝑗 = 𝜌𝐻3𝑎𝑏𝑚∗
𝑖𝑗                    (17) 

The equation of motion of the vibrating plate can 

be obtained by Hamilton’s principle: 

𝛿 ∫ (𝑉 − 𝑇)𝑑𝑡 = 0
2𝜋 𝜔⁄

0
               (18) 

In which 𝛿 indicates the variation of the integral, 

𝑉 and 𝑇 are respectively the total strain and kinetic 

energies. This leads to the following set of 𝑛 non-

linear algebraic equations: 

 

3𝑎𝑖𝑎𝑗𝑎𝑘𝑏
∗
𝑖𝑗𝑘𝑟 + 2𝑎𝑖𝑘

∗
𝑖𝑟 − 2𝜔∗2𝑎𝑖𝑚

∗
𝑖𝑟 = 0⁡⁡⁡⁡⁡⁡ 

𝑟 = 1, . . , 𝑛                           (19) 

 

which may be written in a matrix form as: 

3[𝐵∗(𝐴)]{𝐴} + 2[𝐾∗]{𝐴} − 2𝜔∗2[𝑀∗]{𝐴} = {0} 
(20) 

 

𝜔∗2 can be expressed by pre-multiplying the last 

equation by {𝐴}𝑇, leading to: 

𝜔2 =
𝑎𝑖𝑎𝑗𝑘

∗
𝑖𝑗+

3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏

∗
𝑖𝑗𝑘𝑙

𝑎𝑖𝑎𝑗𝑚
∗
𝑖𝑗

             (21) 

With: 

𝜔2 =
𝐷

𝜌ℎ𝑏4
𝜔∗2                     (22) 

Substituting equation (21) into the non-linear 

algebraic system leads to:  

3𝑎𝑖𝑎𝑗𝑎𝑘𝑏
∗
𝑖𝑗𝑘𝑟 + 2𝑎𝑖𝑘

∗
𝑖𝑟 −

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗

∗+
3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙

∗

𝑎𝑖𝑎𝑗𝑚𝑖𝑗
∗ 𝑎𝑖𝑚

∗
𝑖𝑟 = 0⁡⁡𝑟 = 2, . . , 𝑛 (23) 

The results relative to non-linear vibrations have 

been obtained by solution of Equation (23) using the 

Harwell library NS01A routine and the complete 

non-linear tensor 𝑏∗𝑖𝑗𝑘𝑟 in order to get accurate 

results in the non-linear regime. 

To study the response to a concentrated harmonic 

excitation force, a forcing term is added to the right-

hand side of Equation (23), leading to: 
3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟

∗ + 𝑎𝑖𝑘𝑖𝑟
∗ − 𝜔∗2𝑎𝑖𝑚𝑖𝑟

∗ = 𝑓𝑟
∗⁡⁡𝑟 = 1, . . , 𝑛                          

(24) 

𝑓𝑟
∗ is the dimensionless generalized force whose 

expression for a concentrated force 𝐹 applied at the 

point of coordinates (𝑥0
∗, 𝑦0

∗) is: 

 𝑓𝑟
∗ =

𝑏3F

𝑎𝐷𝐻
𝑤𝑟

∗(𝑥0
∗, 𝑦0

∗)        (25) 

An iterative method using the Harwell library 

routine NS01A has been used to solve the 𝑛 non-

linear algebraic equations with 𝑛 unknowns (24). It 

consisted on selecting a non-dimensional excitation 

frequency 𝜔∗and starting with an initial estimate for 

the 𝑛 contributions (𝑎1, 𝑎2, . . , 𝑎𝑛). The solution 

obtained was then taken as a new initial 

approximation for the following step for an 

excitation frequency 𝜔∗ + Δ𝜔∗.  The desired 

frequency segment was covered by repeating this 

process. it is worth noticing here that the routing 

sometimes diverges when passing through 

bifurcation points if the initial solution estimate is 

too far from the nearest solution. 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 

The non-linear regime of a SCSCRP with added 

masses is almost not discussed in the literature.  Most 

of the papers deal only with linear frequencies and 

there is a wide obscure gap of information about the 

non-linear behavior of the SCSCRP with an added 

mass including the non-linear frequencies and mode 

shapes, the hardening type of non-linearity 

accentuation and the non-linear forced response to 

harmonic excitation.  This topic, addressed in the 

present work, is presented in what follows. 

If only linear vibrations are considered, the term 

𝑏∗𝑖𝑗𝑘𝑟 is omitted and Equation (19) reduces to:  

𝑎𝑖𝑘
∗
𝑖𝑟 − 𝜔∗2𝑎𝑖𝑚

∗
𝑖𝑟 = 0⁡⁡⁡⁡𝑟 = 1, . . , 𝑛      (26) 

The classical eigen value problem (26) is solved 

using MATLAB Software to get the SCSCRP with 

an added mass linear frequencies and mode shapes. 

In the case of a SCSC square plate with no added 

masses, the non-dimensional parameter 𝜂 equals 0 

and the plate aspect ratio 𝛼  equals 1. The frequency 

obtained here using 9 by 9 symmetric and anti-

symmetric functions in both directions have been 

compared to those given by Leissa [10], Whitney 

[21], Low et al [22], and G. B. Chai [23]. A good 

agreement is found between the present results and 

those of Leissa [10], Whitney [21] and G. B. Chai 

[23], as can be seen in Table 1. It is worth noticing 

that G. B. Chai [23] used 100 functions to generate 

his results, very close to those obtained here with 

much less computational effort.  
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Table 1.  comparison of the natural frequencies of a square SCSCP with no mass added 

mode Leissa 

[10] 

Whitney

[21] 

Low, 

Chai 

and Ng 

[22] 

G. B. 

CHAI 

[23] 

Present 

work 

(1,1) 28.95 29.03 29.61 28.97 28.95 

(1,2) 54.74 55.33 55.83 54.77 54.74 

(2,1) 69.33 69.35 71.17 69.40 69.32 

(2,2) 94.59 94.84 97.20 94.71 94.60 

Table 1.  Natural frequencies of a SCSCRP with an added 

centric mass. 𝛼 = 0.59 

𝜂 Experi-

ment 

[22] 

FEM 

[25] 

R.Q. 

[8] 

Chai 

Gin 

Boay 

[24] 

Present 

work 

0 62.76 67.62 68.48 67.11 67.08 

0.13 51.52 53.91 51.40 48.75 50.08 

0.28 41.94 44.45 42.35 38.83 39.85 

0.41 34.14 38.90 37.20 33.48 34.60 

0.56 31.6 34.73 33.30 26.59 30.51 

0.69 28.51 31.88 30.62 25.99 27.93 

0.82 26.85 29.61 28.49 24.96 25.90 

0.98 24.86 27.50 26.49 23.09 23.93 

1.10 24.02 26.12 25.19 21.88 22.71 

1.23 23.41 24.82 23.96 20.76 21.57 

1.38 22.24 23.62 22.82 19.72 20.46 

1.53 22.00 22.54 21.79 18.79 19.48 

1.67 21.29 21.66 20.95 18.03 18.71 

1.81 20.44 20.87 20.20 17.36 18.02 

1.94 20.11 20.17 19.53 16.76 17.44 

2.08 19.47 19.53 18.92 16.22 16.87 

2.22 18.69 18.95 18.36 15.73 16.35 

2.36 18.17 18.42 17.85 15.28 15.88 

2.50 17.88 17.93 17.38 14.86 15.45 

2.64 17.44 17.47 16.94 14.48 15.05 

2.78 17.23 17.05 16.54 14.12 14.68 

 

For comparison purposes for a plate with an 

added centric mass, the SCSCP studied in [24] has 

been examined by the present method using, due to 

the symmetry, only 4 symmetric functions in both 

directions, which led to 16 plate functions in total. 

Table 2 presents the frequencies obtained 

experimentally in [22] and those calculated here for 

a SCSCRP (𝛼 = 0.59) with an added centric mass.  

The difference between experimental and semi-

analytical results does not exceed 4% for added mass 

ratios𝜂 less than unity. For higher values, up to 𝜂 =
2.78, the difference increases to 15%.  This may be 

explained by the fact that the added masses are 

attached together vertically, leading to an increase in 

the moment of inertia when multiple masses are 

used, which is not taken into consideration here. 

The presence of the added mass concentrates the 

vibration at the mass location. It is also noticed that 

for eccentric added masses, the point of maximum 

deflection is moved from the plate center to the mass 

location and that phenomenon is clearer for small 

plate aspect ratios and high mass ratios. 

Concerning the fundamental mode shape, it is 

affected by the simple supports, especially in the 

non-linear regime. Fig. 3 presents the normalized 

sections of the first non-linear mode shape 

corresponding to y*=0.5 for SCSCRP (α=0.6) 

carrying a point mass (η=0.2) at its center. Fig. 4 

presents the same conditions but along the line 

x*=0.5.  It is clear that the changes appear along the 

y* direction which is close to the simple supports 

and that the added mass tends to make the shape of 

the mode around the mass location straighter with an 

increase in the vibration amplitude. The clamped 

edges limit the changes at large vibration amplitudes 

on the contrary to the simply supported edges. 

Fig. 5 presents the normalized section of the plate 

first non-linear mode shape corresponding to y*=0.5 

and 𝛼 = 0.6 and an added mass (𝜂 = 0.2) placed at 

the point of coordinates (0.25,0.5). The normalized 

sections correspond to different amplitudes as 

indicated in the figure. It appears that the maximum 

displacement 𝑊𝑚𝑎𝑥 moves towards the mass 

location with increasing the vibration amplitude and 

that the curvature increases in the largest area 

between the maximum of the mode and the clamps. 

 
Fig. 2. Normalized sections of the first non-

linear mode shape corresponding to y∗ = 0.5 

and α = 0.6 carrying a concentrated mass at 

the plate center η = 0.2. (1) lowest 

amplitude, (2): highest amplitude 
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Fig. 3. Normalized sections of the first non-

linear mode shape corresponding to 𝑥∗ = 0.5 

and 𝛼 = 0.6 for a plate carrying a 

concentrated mass at its center 𝜂 = 0.2. (1) 

lowest amplitude, (2) highest amplitude 

 

 
Fig. 4. Normalized sections of the first non-

linear mode shape corresponding to 𝑦∗ = 0.5 

and 𝛼 = 0.6 for a plate carrying concentrated 

mass at (0.25,0.5)  𝜂 = 0.2. (1) lowest 

amplitude, (2) highest amplitude 

 

The non-linear behavior of a SCSCRP carrying a 

mass is examined in this paper in order to investigate 

the ways the added mass hardens or softens its non-

linearity type. This appears in the joint figures 

displaying the maximum amplitude 𝑊𝑚𝑎𝑥  versus the 

non-linear frequency parameter. Fig. 6 presents the 

backbone curves of a SCSCRP (𝛼 = 0.6) with no 

mass added and with an added centric mass for mass 

ratios 𝜂  equal to 0.1⁡and⁡0.2. It is observed that the 

added centric mass decreases the hardening type of 

non-linearity, which decreases also with increasing 

the added mass ratio. 

 The backbone curves presented in Fig. 7 for 

SCSCRP without and with an added mass located at 

(0.25,0.5), for mass ratios 𝜂 = 0.1, 0.2, reveal that 

for𝜂 = 0.1, the non-linearity is not affected. For 𝜂 =
0.2, the hardening effect is more reduced if the mass 

location is closer to the clamped edge than to the 

simply supported edge. Fig. 8 shows the backbone 

curves of SCSCRP with no added mass and with an 

added centric mass located at (0.5, 0.25) for 𝜂 =
0.1, 0.2. It is clear that the added mass at that location 

increases the hardening type of non-linearity, which 

may be due to the fact that in this case the mass is 

closer to the simply supported than to the clamped 

edge. 

 
Fig. 5. the backbone curve of a SCSC plate 

with an aspect ratio 𝛼 = 0.6 and no mass 

added and with an added mass located at the 

plate center 

 
Fig. 6. the backbone curve of a SCSC plate 

with an aspect ratio α=0.6 and no mass added 

and with an added mass located at (0.25,0.5) 

 
The SCSCRP response to a harmonic 

concentrated force applied at different locations is 

investigated in this paper and plots of the obtained 

non-linear frequency response functions (NLFRF) 

are given. The mechanical characteristics adopted 

here are: 𝑎⁡ = ⁡0,25𝑚, 𝑏⁡ = ⁡0,15𝑚, ℎ⁡ =
⁡0,0005𝑚,  𝜌 = ⁡7850𝐾𝑔/𝑚3, 𝐸⁡ = ⁡198. 109𝑃𝑎 

and 𝜈 = 0.3. Fig. 9 presents the NLFRF a SCSCRP 

with no added mass and with an added mass located 

at its center, subjected to a harmonic force applied 

also at the plate center. The SCSCRP exhibits a 

hardening type of non-linearity and the added mass 

decreases the non-linearity as can be seen in the 

vicinity of the first, fourth and eighth modes.  The 

second and third modes are not excited by the centric 

harmonic force. Fig. 9 presents the NLFRF of a 

SCSCRP (𝛼 = 0.6) with no added mass and with an 

added mass located at (0.25,0.5) under a harmonic 

centric excitation. It is worth noticing that the mass 

located at (0.25,0.5) activates the response to a 

centric excitation of the second mode but not that of 

the third mode.  This is due to the fact the added mass 

moves the nodal line of the second mode from the 
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plate middle line. Also, it activates the response to 

the sixth mode. This observation may be useful in 

understanding that an added centric or eccentric 

mass may affect unexpectedly the dynamics of a 

SCSCRP which requires a careful analysis. 

 
Fig. 7. the backbone curve of a SCSC plate 

with an aspect ratio α=0.6 and no mass added 

and with an added mass located at (0.5,0.25) 

 
Fig. 8. the non-linear frequency response 

function of a plate 𝛼 = 0.6 subjected to a 

centric harmonic concentrated force 𝐹 =
0.3𝑁.  The continuous line: no added mass. 

The discrete line: an added mass located at 

the plate center 𝜂 = 0.1 

 
Fig. 9. the non-linear frequency response 

function of a plate 𝛼 = 0.6 subjected to a 

centric harmonic concentrated force 𝐹 =
0.3𝑁. The continuous line: no added mass. 

The discrete line: an added mass located at 

(0.25,0.5) 𝜂 = 0.1 

 

4. CONCLUSION 

 

The semi analytical model presented here for 

linear and non-linear vibrations of a SCSCRP with 

an added point mass has been first successfully 

validated by comparing the results obtained for the 

linear frequencies with those available in the 

literature. The presence of the added mass changes 

the mode shape by concentrating the deformation at 

the added mass location, and this effect appears more 

for low plate aspect ratios. In the case of non-linear 

vibrations, the added mass modifies the 

configuration of the mode shape as in linear 

vibrations with slight deformations beside the 

location of the added mass in the simply supported 

direction. Also, it is worth noticing that the 

hardening non-linearity type of SCSCRP plates 

increases if the added point mass is placed in the 

simple supports direction and decreases if the mass 

is placed at the plate center or in the clamped 

supports direction. Also, the presence of an added 

eccentric mass activates the participation in the 

response of antisymmetric modes to a centric 

harmonic excitation because of the changes it 

induces in the whole modal distributions, including 

frequencies and nodal lines.  This shows that a mass 

addition may lead, if not well controlled, to 

unexpected situations, requiring careful attention. 

Also, non-linear frequency response functions have 

been obtained for the first time, based on iterative 

numerical solution in each case of the complete set 

of non-linear algebraic equations, for various 

SCSCRP carrying a centric or an eccentric added 

mass. The obtained results by the present model 

allows predicting the vibration characteristics of a 

plate with an added mass. The necessary precautions 

could then be made when diagnosing a vibrating 

structure since the presence of the added mass 

changes the configuration of the linear and non-

linear mode shapes and the response to a forced 

excitation and the changes depend on the position of 

the added mass. 
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