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In this work, residual stresses arising after an industrial TIG welding process on an aerospace grade part are investigated. 

The customer demand for high product resistance and high dimensional accuracy calls for the control of the welding process 

and the minimisation of the residual stresses. Dimensional check of manufactured parts was traditionally performed in a 

quality room by means of coordinate measuring machines (CMM). For parts larger than 1 meter, this operation shows several 

issues, as the handling and the need for large and expensive measuring devices. These needs can be fulfilled by an innovative 

method that, through continuous dimensional check, allows to optimise the welding process parameters.  This method is built 

on a post-process measurement of part shrinkage based on a Computer Vision technique, the outcome being a 3D 

reconstruction of the actual part. Moreover, the whole procedure is low-cost and time saving, as it can be performed with a 

conventional camera mounted on a tripod. A Finite Element Model (FEM) of the TIG process on the selected sample was 

developed. The result of the numerical model was compared with the Computer Vision-based post-process measurement. The 

simulation scenario predicted by Finite Element Analysis agrees with measurements.  

 

Welding Process, FEM simulation, Computer vision, Machine Learning 

 

1. INTRODUCTION 

 

Welding is a fabrication process, widely used in the 

aeronautical, naval and metalworking fields, that 

merges two parts through a cord of molten material. 

The operating principle consist of an electric 

discharge produced by the electrical potential 

difference between an electrode and the sample. 

This discharge generates a heat beam penetrating 

the material and melting the two parts in contact. 

The pouring of inter gases create a protected 

atmosphere around the welded area to prevent 

oxidation. There are different welding methods: 

TIG, MIG/MAG, MMA, SAW and PLASMA are 

the most common. The Tungsten Inert Gas (TIG) 

welding process consists of the union of two parts 

by means of a tungsten electrode immersed in an 

atmosphere of Argon gas. In this process, the pieces 

instantly switch from room to very high 

temperature. This leads to a non-uniform 

temperature distribution, associated thermal strains 

and localised plastic deformation [1,2]. Indeed, one 

of the major issues after welding process, is the 

residual stress of the resulting piece and the 

reticular distortion due to local heating [3]. Inside 

the welded area, cracks and internal tensions are 

created and change the mechanical behaviour of the 

material, making it more subject to brittle fracture 

and allowing cold cracking. The reticular distortion 

often causes issues such as dimensional defects 

during assembly and increase in product costs due 

to the rework that the pieces must undergo. Several 

factors can contribute to the onset of stress and 

residual deformation. An important factor to 

consider is the plastic deformation in the base metal 

and the filler metal used in welding process. It 

depends solely on the structure of the material after 

manufacture [4,5]. The mechanical features of the 

material reflect the metallurgical conditions of the 

base and weld metal. Moreover, the process 

parameters include the welding method, heat input, 

preheating, welding sequence and retention 

conditions. In some steel welded parts, the 

transformation of solid-state austenite-martensite 

throughout cooling affects residual stress and 

distortion. Accurate predictions and the reduction 

of welding residual stress and deformation are very 

relevant in improving the quality of welded 

structures. FEM is a powerful numerical simulation 

tool and a good alternative to estimate welding 

residual stress [6,7]. FEM of the welding process is 

highly effective in predicting thermomechanical 

behaviour [8]. Other studies reported the 

comparison between F.E. simulations and X-ray 

measurements of residual stresses in spot welding 

[9]. Monitoring the actual deformation in a welding 

process is crucial to validate both the F.E.M. 

calculation and the process result. In the current 
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manufacturing technological landscape, a cross-

sectoral monitoring technique is Computer Vision 

(CV). The industrial exploitation of this wide 

technique dates to several decades ago [10]. 

Nevertheless, its pervasive use is quite recent, 

thanks to more computing power and the 

availability of sophisticated optical devices. In 

welding processes, many efforts have been done in 

effective seam monitoring, together with Artificial 

Intelligence (AI) algorithms. In [11,12,13], images 

of the fusion bed and the seam were used to train 

Convolutional Neural Networks (CNN) to classify 

surface defects. In recent years, Digital Image 

Correlation (DIC) methods have been applied to 

monitor the shape of manufactured pieces. In [14], 

a simple experimental set-up allowed to estimate 

the deformation of a cylindrical specimen exposed 

to high pressure. Ali et al. [15], attempted to detect 

defect on small cylindrical pieces by means of a 

quite sophisticated mirror-based device. Xiao et al 

[16] monitored the dimensional accuracy of a small 

conical workpiece on a rotating platform with a 

fixed camera. In [17] a similar work was carried on, 

to check roundness of an automotive camshaft. The 

dimensional monitoring of large cylindrical pieces 

(diameter >1m) during welding operations is more 

complex than smaller ones. Thus, a movable and 

versatile device is preferable to fixed and 

sophisticated ones. In this paper, we report a 

coordinated F.E.M. study on residual stresses and 

Computer Vision measurements to monitor part 

deformations. The goal is to obtain a reliable, cheap 

and easy-to-use device to perform dimensional 

check of large welded parts. This device should be 

managed by non-expert personnel. 

 

2. MATERIALS 

 

The sample under investigation is a quasi-

conical hollow part, composed of Nickel Alloy 

Haynes 230 [18], whose thermal and mechanical 

properties are reported in Table 1. The sample is 

composed of a nickel-chromium-tungsten-

molybdenum alloy that shows high-temperature 

strength and excellent long-term thermal stability. 

Other relevant features include lower thermal 

expansion characteristics, as compared to most 

high-temperature alloys, and a pronounced 

resistance to grain coarsening with prolonged 

exposure to high temperatures. 

The sample is part of a larger construction 

designated for the purpose of power production. 

The diameter of the sample is about 1.5 meters. In 

order to test the numerical simulation and to obtain 

data for Computer Vision analysis, a TIG weld has 

been performed on the part. This operation is 

needed to restore a heavily stressed area, as a result 

of an earlier shaping process. An image of the piece 

with the welded part is reported in Fig. 1.  
 

 

 

Table 1. Haynes 230 Alloy physical properties 

Physical 

property 

Temperature 

(°C) 

Value 

Density RT 8.97 g/cm3 

Thermal 

diffusivity 

RT 24.2 x 10-3 cm2/s 

1000 48.2 x 10-3 cm2/s 

Thermal 

conductivity 

RT 8.9 W/m-°C 

1000 28.4 W/m-°C 

Specific heat 
RT 397 J/kg·°C 

1000 617 J/kg·°C 

Mean 

coefficient of 

thermal 

expansion 

RT 11.8 x 10-6m/m·°C 

1000 16.1 x 10-6m/m·°C 

Dynamic 

modulus of 

elasticity 

RT 209 GPa 

1000 141 GPa 

 

 

 

Fig. 1. The piece under investigation. The red 

circle evidences the TIG welding. 

 

3. NUMERICAL SIMULATION 

 

3.1. Methods 

When dealing with large parts (>1 meter), the 

challenge of the numerical modeling is to keep the 

model light and robust, while maintaining the 

physic significance of the process. The actual 

welding process is quite complex: the welding tool 

is motionless and the conical structure is 

constrained to a rotating platform; the control of the 

rotational speed of the platform actually drives the 

velocity of the weld bead growth along the 

circumferential direction. In order to achieve a 

versatile – but at the same time – representative 

model of such a process, some simplifications were 

considered. In this section we describe the 

numerical investigation methodologies that have 

been used. 

 

3.2 The numerical model 

In order to obtain an estimate of the residual 

deformation that occurs during the welding process, 

a one-way Thermal Transient - Structural Transient 

Finite Element Analysis (FEA) was implemented. 

The model itself is capable of consider the effect of 

the local heating due to the rotating welding process 

on the deformation of the structure. 
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Essentially, the deformation due to welding 

process was simulated considering, in a numerical 

environment, two distinct and interconnected 

phases. In the first phase, a transient analysis of the 

thermal effect induced by the local action of the 

welding tool was set on. In the second phase, a 

transient structural case was resolved according to 

the transient thermal loads acting. Since the 

structure is axial-symmetric in terms of geometry 

and constraints but not in terms of thermal loads, it 

was necessary to define a discrete model of the 

entire conical structure. To maintain the mesh 

dimension reasonable, the conical structure was 

discretised by means of shell elements. The 

thickness of the solid was modelled assigning the 

thickness of one shell element and this was not a 

big deal since the ratio between thickness of the 

sheet metal and the other dimensions is much less 

than 1. Then, the solid was modelled motionless, 

with the moveable welding tool along the 

circumferential direction. In this way it was 

possible to obtain a model with fixed mesh, with 

benefits for versatility. The welding tool itself was 

modelled as a fixed heat flux, acting, for 

incremental instants, on adjacent elements of the 

mesh. By suitably defining a fixed pre-set 

circumferential dimension for the shell elements, it 

was possible to simulate the progression of the 

welding tool with minimal computational cost, at 

the expense of the size of the whole structure. 

Such a discrete model is composed of 377400 

elements (QUAD4 thin shell) and 375920 nodes, 

and each shell element is 6,35 mm thick.  

The part was modelled using Nickel Alloy 

Haynes 230, whose thermal and mechanical 

properties are reported in Table 1. 

 

3.3 The Transient Thermal Analysis (TTA) 

The simulated welding process advances at the 

speed of 15 cm per minute. After covering an 

angular distance of about 45° the process is put on 

stand-by to carry out dimensional checks. 

The TTA was built to run for 150 seconds. In 

the first 90 seconds, for each second of simulation a 

trapezoidal profile Heat flux (200 W/mm2) was 

subsequently applied for one second on the middle 

elements of the weld bead. In this way, since the 

circumferential dimension of the shell element was 

set at 2,5 mm, the thermal analysis in 90 seconds 

covered about 45° as an angular distance. The 

remaining 50 seconds were left to settle the 

conductive heat transfer in the structure. The solver 

was programmed to run 4 steps of simulation per 

each second of analysis. 

 

Fig. 2. Sketch of the single point 

experimental measure by thermocouple, on 

the point indicated by (A). 

 

3.4 Boundary conditions 

The starting temperature of  TTA is set at 22°C. 

The faces of the conical surface were considered 

convective with a coefficient of 1e-5 W/mm2°C, 

that is the convective coefficient of a natural 

convection. 

 

3.5 Results of TTA 

The thermal profile implemented in the 

numerical analysis was obtained according to the 

nominal heat outflowing from the welding head. 

Fig. 3 describes the thermal features of the heated 

zone. The temperature pattern was validated by a 

single point thermocouple experimental measure, in 

the area indicated with “A” in Fig. 2. The detected 

temperature in “A” was T(A) = (360±20) °C after a 

time ts = (32±4) s upon the passage of the welding 

head. 

Fig. 4 represents the temperature distribution at 

the end of the simulation. Welding direction goes 

from left to right. 

 
Fig. 3. Temperature pattern obtained by 

simulation into the heated zone. 

 

 
Fig. 4. Results for the TTA on the simulated 

welding process. 
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3.6 The Transient Structural Analysis (TSA) 

In the one-way coupled thermal structural analysis, 

the thermal field solution (body temperature) is 

taken as input for the structural dynamic analysis.  

This has been defined in the nonlinear field 

including large deformations. We performed a 10 

second analysis. An integration time step of 1/20 

seconds was defined to catch solution convergence. 

The conical structure was considered fixed at 

ground by its larger circumferential base. 

3.7 Results of TSA 

Fig. 5 represents the Equivalent Von Mises Stress 

after 10 seconds of simulation. 

 
Fig. 5. Equivalent Von Mises Stress after 10 

seconds of simulation. 

 

This state of structural stress likely induces 

residual deformations. For this reason, the 

directional deformation along of the axis of the 

cone was evaluated. Three sections (Fig. 6) were 

identified in the area subject to heating due to 

welding (approximately a "slice" with an angular 

opening of about 45 °): 

• Section 1 - corresponding to 0 ° (starting point 

of the welding). 

• Section 2 – corresponding to 30 ° 

(intermediate point of welding). 

• Section 3 – corresponding to 45° (end point of 

the welding). 

 
Fig. 6. Description of the identified sections 

chosen for the deformation analysis. 

 

Deformations along the cone axis are plotted in 

the following graph (Fig. 7). It is useful to 

remember that, dealing with dynamic simulation, 

the deformations detected vary over time, 

depending on the variation of the thermal field. 

 
Fig. 7. Deformations along the cone axis (X 

axis for the simulation) for three 

characteristic sections: 0, 30 and 45 degrees, 

versus simulation time. 

 

Performing an integral over the simulation 

volume, it is possible to find the absolute maximum 

and minimum deformation, regardless of the axis of 

reference. The result of such calculation is depicted 

in Fig. 8. 

 
Fig. 8. Intensity of total deformation in over 

the piece versus simulation time. 

 

Fig. 9 shows the deformation along the upper 

circumferential profile, compared to the 

undeformed configuration, that is zero deformation. 

 
Fig. 9. Intensity of maxima and minima 

deformations along the upper circumferential 

profile, versus simulation time. 

 

4. COMPUTER VISION ANALYSIS 

 

4.1 Edge detection method 

Among the large amount of computer vision 

analysis methods, in this work we pick the simple 

use of a commercial camera. Taking advantage of 

the symmetry of the piece under investigation, we 
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use a rotating platform to take photos of the entire 

surface. This kind of inspection is very powerful 

when it is necessary to point out deviations from 

roundness and to digitise the whole outer surface of 

the piece. Nevertheless, this method is cheap, fast, 

and the instrumentation (the camera plus the tripod) 

can be delivered where necessary, if it is needed to 

monitor many manufacturing processes on the same 

part. Clearly, this method is only available when 

dealing with cylindrical or conical pieces [16, 17]  

The experimental set-up consists of a rotating 

platform, as in Fig. 10 – on which the quasi-conical 

structure to be measured is installed – and a camera 

fixed on a tripod to take pictures of the sample. The 

motor driven platform can rotate on its axis at 

constant speed. Meanwhile, the digital camera 

acquires images during a complete revolution of the 

piece, so that 180 frames were obtained at equal 

time and degrees steps (one each two degrees). A 

sequence of operations was performed to extract the 

part profile from each frame. 

Each image has been pre-processed to let the 

edge detection algorithm work easily. The whole 

sequence is explained in Fig. 11. In the first place, 

each image has been cropped to remove most of the 

background and the vertical borders, to maintain the 

relevant edges on a plane, parallel to that of the 

camera. Then, the image has been further cropped, 

as only the upper edge has been processed. In order 

to gain absolute scale in millimetres, measurements 

of the height of the part have been performed at 

fixed rotating positions with a digital gauge. The 

height values have been compared to the proper 

images to obtain the resolution in mm/pixel. The 

final resolution resulted to be 𝑅 = 1.6 𝑚𝑚/𝑝𝑖𝑥𝑒𝑙, 
on the plane where the profile per each image lies. 

Finally, the Canny algorithm was implemented. 

An asymmetric gaussian blur was applied prior to 

the actual edge detection, to consider the 

horizontality of the borders and to discard vertical 

possible unwanted features, like light reflections 

and written notes on the part surface. The Canny 

parameters were adjusted on few test images, then 

batch processing was implemented to speed-up the 

procedure. The edge detection algorithm result is 

depicted in the bottom-right part of Fig. 12. 

 

 

Fig. 10. Experimental set-up for image 

capture 

 

4.2 Point cloud reconstruction 

The 180 black&white matrices obtained from 

edge detection need to be properly treated to get a 

3D point cloud. Firstly, the edge pixels were 

converted into three-dimensional points, assigning 

them X, Y and Z coordinates. The Z axis has been 

chosen to be the height of the piece, i.e. the 

direction along the axis of symmetry; the other 

direction being the X axis. In this way all profiles 

lie on the XZ plane. 

It is necessary to apply a translation of the 

profile set along the X axis to reach the correct 

distance of the borders from the centre of 

symmetry. The parameters of the translation are 

obtained by looking back at the cropping 

procedures explained in the previous section. Once 

the data set is translated, it has to be rotated around 

the Z axis. Each profile has been rotated 

progressively by 2° from the previous one. The 

result is reported in Fig. 13. 

 

 

Fig. 11. Flowchart of point cloud 

reconstruction. 
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Fig. 12. Image pre-processing and edge detection 

  

Fig. 13. Rebuild point cloud from the 

detected edges, after spatial placement. 

 

4.3 Point cloud vs. Model mesh 

The point cloud and the CAD model of the part 

were compared using the free software 

CloudCompare v2.11. The distance between the 

point cloud and the mesh (obtained from the CAD 

model) is considered as the distance between each 

point from the nearest mesh geometrical centre. 

Notably, the mesh was manipulated to maintain 

only the external shell of the part, to consistently 

perform the comparison. Prior to compute the 

distance, alignment between the two objects was 

achieved, overlapping the point resulting from the 

intersection of the Z axis and the base plane, for the 

two objects. The result of the computation is 

reported in Fig. 14. The colour indicates the 

distance of each point from the mesh, calculated 

normally form the surface of the structure. Red 

colour means that the cloud (i.e. the real object) lies 

outside the mesh, blue colour means that the point 

cloud lies inside the mesh. 

To better understand the deviation of the welded 

piece from the theoretical one, the difference values 

have been reported in a graph for three significant 

levels: on the upper circumferential profile, at a 

height of 360 mm, and at a height of 100 mm from 

the base. The graphs are reported in Fig. 15. 

 

 

Fig. 14. Point cloud of the manufactured 

piece colored with the differences between 

the designed part and the actual one. Red 

points represent the actual part lying outside 

the theoretical mesh, blue points represent 

actual part lying inside. 

 

 
Fig. 15. Graph of normal deformations taken 

at three significant altitudes from the piece 

base: upper crown, medium height and near 

the base. 

 

5. DISCUSSION 

 

The results obtained from the numerical 

simulation show that conical structure, when 

subject to a physical process of high heating, 

undergoes deformations which manifested as 

residuals after loading. The deformations 

themselves are rather marked both along and 

normally to the axis of symmetry. Analysis of total 

residual deformations led to a result of a maximum 

ranging between 15 and 8 mm and a minimum of 

2.5 mm, after a simulation of 10 second. Computer 

Vision (CV) measurements reported a maximum 

displacement, with respect to the theoretical model, 

of 16 mm, and a minimum of 3 mm. The CV 
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experiment can be considered as performed at 𝑡 =
∞, with respect to the simulations. Taking into 

account the experimental error of about 1.6 mm for 

the CV measurements, it is reasonable to claim that 

the numerical simulation and the CV analysis are in 

good agreement, thus it is possible to forecast the 

structural and dimensional modification of the 

tested structure by means of a simulation after a 

TIG welding process. 

 

6. CONCLUSION 

 

This work aims at developing a fast, easy-to-use 

and cheap method to perform dimensional check of 

large manufactured parts. The FEA of welding 

process allows to grasp the thermal characteristics 

of the phenomenon and its impact on the structural 

features of the component under analysis. This 

method has been validated by the CV 

measurements. A careful setting up of the CV 

validation process allows to obtain feedback that 

could be used to redefine some characteristics of 

simulated physics, to reach more accurate results. 

The CV measurements, individually possess high 

diagnostic power in a production process also 

without FEA, thus can be exploited alone. Such 

preliminary calculation is very time and money 

saving when dealing with expensive materials and 

numerous production processes. Besides, post-

process imaging can clarify if the part being 

examined lies into the requested tolerances.  

 

7. FUTURE WORK 

 

The analysis carried out in this work highlighted 

the complexity of welding a large element due to 

the shrinkage of the material. The latter, in fact, 

compromises the final shape of the piece preventing 

to reach the shape tolerance expected by the 

customer. Minimisation of shape defects calls for 

optimisation of the welding process. Many effort is 

done on this topic. A recent work exploits the use 

of Genetic Algorithms to optimise the welding 

sequence [19]. In this work the coordinated use of 

FEA and robotic is explored and presented as low 

time-consuming. Other data-driven approaches 

describe the use of data (produced by pervasive 

process monitoring) to generate optimised 

production process models [20]. We plan to collect 

data on a wide range of quantities representing the 

process parameters such as arc current, voltage and 

temperature, surface temperature, wire and torch 

feeding speed and other significant features. These 

data will be recorded in real time, during the 

production process. The resulting time series 

(together with the CV data already available) will 

be employed to build data-driven schemes of the 

process, by means of proper optimisation 

algorithms. The data will also be used to train 

Recurrent Neural Networks (RNN), in order to 

perform real-time Anomaly Detection on the 

welding process. Several studies reported that, by 

feeding the algorithms with control parameters of 

the welding machine, it is possible to obtain a 

prediction of the welding seam [21,22] or of the 

breaking load [23]. By monitoring these parameters 

in real-time, a smoother weld could be achieved 

and shape defects reduced. 

The ultimate goal is a scenario where the 

algorithms will be able to interact with the process, 

regulating the optimal parameters while the process 

is going on. The algorithms will manage both data 

from process parameters (upstream of 

manufacturing operation) and from CV 

measurements (downstream of operation), in a 

feedback system.  It will be possible to have a 

controlled and optimised system with low cost 

technologies able to satisfy the customer's 

specifications. 
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