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Abstract 

Geometrically non-linear vibrations of functionally graded Euler-Bernoulli beams with multi-cracks, 

subjected to a harmonic distributed force, are examined in this paper using a theoretical model based on 

Hamilton's principle and spectral analysis. The homogenisation procedure is performed, based on the neutral 

surface approach, and reduces the FG beams analysis to that of an equivalent homogeneous multi-cracked 

beam. The so-called multidimensional Duffing equation obtained and solved using a simplified method (second 

formulation) previously applied to various non-linear structural vibration problems. The curvature distributions 

associated to the multi-cracked beam forced deflection shapes are obtained for each value of the excitation level 

and frequency. The parametric study performed in the case of a beam and the detailed numerical results are 

given in hand to demonstrate the effectiveness of the proposed procedure, and in the other hand conducted to 

analyse many effects such as the beam material property, the presence of crack, the vibration amplitudes and 

the applied harmonic force on the non-linear dynamic behaviour of FG beams. 
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1. INTRODUCTION  

 

Structures made of functionally graded materials 

(FGM) have a very wide area of industrial 

applications, especially those involving severe 

environments with high temperatures or important 

temperature gradients, due to the properties of this 

type of materials characterized by a smooth and a 

continuous transition in the compositional profile. 

However, damages in the form of cracks may be 

observed in these materials during their operational 

life as a result of various external or internal 

influences or even during the manufacturing process. 

It is known that a crack in a structure produces a local 

change in the stiffness altering its dynamic 

characteristics and increasing its vulnerability. It is 

therefore of a crucial importance to understand and 

control the structural behaviour in such situations in 

order to ensure the safety and durability of the 

structural components. Structural health surveillance 

and vibration analysis are the most often used 

techniques by researchers and engineers in order to 

maintain the structural integrity. As beams are very 

currently used as structural components, the 

investigation of the dynamic behaviour of 

functionally graded cracked beams has been an 

active area of research in the last few years. 

Numerous methods, based on analytical, semi-

analytical and numerical techniques, are available in 

the open literature, to investigate the effects of 

cracks on the linear and non-linear vibration 

characteristics in both the free and forced regimes. 

Sridhar et al. used a pseudo-spectral finite element 

method to analyse the wave propagation in 

functionally graded beam (FGB) and layered 

structures with and without vertical or horizontal 

cracks [1]. Yang and Chen analytically studied the 

influence of an open edge crack on the free vibration 

and elastic buckling of FGB using the Euler-

Bernoulli beam theory and the rotational spring 

model with different boundary conditions [2]. Later, 

Ke et al. studied the free vibration and elastic 

buckling of cracked FGB with different end 

conditions within the Timoshenko beam theory 

using the same method as that of Yang and Chen [3]. 

Matbuly et al. used the differential quadrature 

method to study the free vibration of a FG cracked 

Timoshenko beam resting on a Winkler–Pasternak 

foundation [4]. Yu and Chu used the p-version of the 

finite element method to study the transverse 

vibration characteristics of cracked FGB [5]. Ferezqi 

et al. presented an analytical investigation of the free 

vibrations of a FG cracked Timoshenko beam 

employing a wave approach [6]. Lien et al. used [7] 

an alternative approach called dynamic stiffness 

method to establish a new form of frequency 
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equation of free vibration multi-cracked FG 

Timoshenko beams taking into account the actual 

position of neutral plane. Shabani and Cunedioglu 

[8] investigated the free vibrations of a cantilever 

symmetric FG sandwich Timoshenko beam with two 

cracks using the finite element method. Very 

recently, Kou and Yang developed a mesh-free 

boundary-domain integral equation method to 

analyse the free vibration behaviours of the FGB 

with edged cracks [9]. On the other hand, many 

researches have examined the case of a cracked FGB 

subjected to external loadings in the form of moving 

loads or axial forces [10–16]. Lately, Lin-Feng Zhu 

et al. [17] analysed the vibrational power flow of a 

cracked FG Timoshenko beam under a concentrated 

transverse harmonic force using the wave 

propagation approach to obtain the input power flow 

and transmitted power flow and applying the 

continuous wavelet transform to deal with the 

inverse problem of crack identification. It should be 

pointed out that all of the aforementioned 

investigations were limited to linear analysis. In 

terms of non-linear analysis of FGB, very few works 

have been devoted to non-linear free vibrations of 

cracked FGB. Kitipornchai et al. investigated the 

non-linear free vibration of FG cracked Timoshenko 

beam using the Ritz method and the rotational spring 

model [18]. Akbaş used the total Lagrangian finite 

element method to investigate the geometrically 

non-linear vibration of an edge cracked Timoshenko 

beam [19] and more recently Panigrahi and Pohit 

studied the free vibration of a cracked FGB, based 

on the neutral surface approach, the Ritz method and 

an iterative technique [20]. To the author’s best 

knowledge, the researches regarding non-linear 

forced vibration responses of cracked FGB are very 

limited. Yan et al. studied the non-linear dynamic 

response of FG Timoshenko beam with an edge 

crack under a parametric excitation, combining a 

static compressive load and a harmonic excitation 

force [21]. Panigrahi and Pohit studied the non-linear 

dynamics of a FG cracked Timoshenko beam under 

an excitation force using the harmonic balance 

method in conjunction with an iterative technique 

[22]. The readers interested in more details on this 

topic can refer to [23]. The present article is an 

extension of our previous work [24], based on the 

single mode approach. The objective was 

particularly focused on the prediction of the non-

linear frequency response curves in the 

neighbourhood of the resonances considered. The 

applicability of this approach shows that the non-

linear effect does not appear only via the amplitude 

frequency dependence but also via the amplitude 

dependence of the cracked FGB deflection shapes. 

The purpose of the present contribution is the 

application of the non-linear forced vibration model 

previously reported in [25] using a multimode 

response approach and combined with the 

homogenization procedure based on the neutral 

surface approach previously adopted in [26,27]. This 

allowed an explicit calculation of multidimensional 

non-linear frequency response curves, the 

corresponding amplitude dependence deflection 

shapes and the associated curvatures distributions of 

a multi-cracked FGB subjected to a uniformly 

distributed harmonic force applied over the beam 

length. The closed-form solutions and the transfer 

matrix method used previously in [28, 29] are 

employed here and the resulting frequency equation 

is solved iteratively by the Newton Raphson 

algorithm. The improved model developed in [30] is 

used to obtain the multi-cracked beam non-linear 

deflection shapes and the dependence frequency 

amplitudes (backbone curves) at large vibration 

amplitudes. A parametric study is performed to 

explore the effects of the gradient of material 

properties, the vibration amplitudes, the crack 

parameters and the applied harmonic force on the 

non-linear forced dynamic behaviour of multi-

cracked FGB. 

( 
2. PROBLEM FORMULATION  

 

2.1. Mechanical properties of the FG multi-

cracked beam 

(Consider the straight functionally graded Euler-

Bernoulli uniform beam, with N  multi-cracks 

located at the positions 
jcx , having the geometrical 

characteristics shown in Fig. 1. As may be seen, the 

FGB, supported by linear and rotational springs at 

both ends, is subjected to harmonic excitation forces. 

 ( )
( )ln

1

z
k

hE z E ke=  (1) 

 ( )
( )ln

1

z
k

hz ke =  (2) 

with 1E , 1  being the elastic modulus and the 

material density at the FGB top surface respectively. 

( )0z =  corresponds to the middle surface. It should 

be emphasized that the Poisson's ratio   is 

considered constant throughout the analysis because 

of its weak influence on the stress intensity factor 

(SIF) [11]. The index 2 1k E E=  is introduced as a 

material property ratio. 

 

2.2. Homogenisation procedure based on the 

neutral surface approach 

In the case of FGB, the material property changes 

in the thickness direction are not symmetric, and 

consequently, the neutral plane does not coincide 

with the middle plane. As a result, the bending-

extensional coupling effect occurs, as was observed 

in [18]. The distance separating the two planes can 

be expressed as follows [22]: 

 ( ) ( )2 2

2 2

h h

h h
zE z dz E z dz

− −

=    (3) 

The formulation presented in what follows is based 

on the neutral surface approach. By considering the 
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change of variable z z = + , the coupling between 

the extension and bending is eliminated from the 

equations and the effective parameters of the 

equivalent homogeneous beam are defined as 

explained below (equations 14 to 16 and equation 

32). 

 

2.3. Rotational spring model 

The cracked FGB is modelled as an assembly of 

uniform sub-segments connected by massless 

rotational springs as in [31] presenting the reduced 

local flexibility calculated using the fracture 

mechanics theory. It is assumed that the crack, 

perpendicular to the beam surface, remains always 

open. The bending stiffness K  of the cracked 

section is related to the flexibility C  by [26]: 

( ) ( )

( )

2 2

2
0

72 1 , 1f h k
C d

KE h





   




−
= =  (4) 

With ( )E   is the effective elastic modulus at the 

crack tip defined as:  

 ( )
( )

1

1
ln

2
k

h
E E ke

 



− 
− + 
 =  (5) 

Where h  is the crack depth and ( ),f h k  is a 

crack correction function of two independent 

variables. Through a number of numerical 

experiments, the function f  has been expressed as 

a rational function [5]: 

 ( ),
NUM

f h k
DEN

 =  (6) 

Such as: 

 
( ) ( )

( ) ( ) ( )

2

3 2

1.1732 0.3539ln 0.0289 ln

0.0061 ln 0.6625 3.072

NUM k k

k h h 

 = − +  

 − + + 

  (7) 

and 

 
( ) ( )

( ) ( ) ( )

2

2 3

1 0.0014ln 0.0017 ln

1.9917 3.0982 3.0982

DEN k k

h h h  

 = − −  

+ − −

 (8) 

 

2.4. Linear vibration analysis 

Based on the Euler-Bernoulli beam theory, the 

longitudinal displacement U  and the transverse 

displacement W of an arbitrary point along the x  

and z  axes are obtained as: 

 
( ) ( )

( ) ( )

, , , ,

, , ,

w
U x z t u x t z

x

W x z t w x t


= − 

 =


 (9) 

where u  and w  are the displacement of a current 

neutral line point. The strains are given by: 

 
2

2x

u w
z

x x


 
= −
 

 (10) 

The stress-strain relation given by the 

generalised Hooke's law is: 

 
( )

( )21
x x

E z
 


=

−
 (11) 

The force and bending moment resultant expressions 

are: 
2 2

11 11 2

1

2
x x

A

u w w
N dA A B

x x x


    
= = + −  

     
  (12) 

2 2

11 11 2

1

2
x x

A

u w w
M zdA B D

x x x


    
= = + −  

     


 (13) 

11A , 11B  and 11D  are the extensional, coupling and 

bending rigidity coefficients defined by: 

 ( )
( )

( ) ( )2
2

11 11 11 2

2

, , 1, , d
1

h

h

E z
A B D z z z



 

−

− −

=
−

 (14) 

Taking into account Eq. (3) and integrating the 

coefficients in Eq. (14) leads to 11 0B = . Neglecting 

the axial inertia, the equations of motion for the 
thi  

sub-beam can be derived as: 

 0xN

x


=


 (15) 

( ) ( )
2 2 4 2

12 2 4 2eff eff
0xM w w w

I EI S
x t x t


   

− = + =
     

 (16) 

 

Fig. 1. Physical model of the multi-cracked FGB 
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Equation (16) is effective for replacing the FGB 

by an equivalent isotropic beam with an effective 

bending stiffness and a mass per unit length given 

by: ( ) ( )2

11 11 11eff
EI D B A= −  and ( ) 1eff

S I = , with 

1I  defined by: 

 ( )2

1

2

h

h
I z d z






−

− −

=   (17) 

Integrating Eq. (15) with respect to x  and using 

the immovable end conditions 0u =  at 0x = and 

x L=  leads to: 

 
2

11

02

L

x

A w
N dx

L x

 
=  

   (18) 

The above expression for xN  corresponds to that 

of an equivalent isotropic beam with ( )11 eff
A ES= . 

Assuming harmonic vibrations, the transverse 

displacements in the thj  span can be written as: 

( ) ( ) ( )

( ) ( )

1 1

1 1

* * *cosh sinh

* *cos sin

ij j i j j i j

j i j j i j

w x A L x B L x

C L x D L x

   

   

− −

− −

   = − + −   
   

   + − + −   
   

 (19) 

*
1 1,2,..., 1forj jx j N −   = +  

in which *x x L=  and 
j c j

x L = . The beam 

eigenvalue frequency parameter 
i , corresponding 

to the beam thi  mode shape ( )1 toi n=  is given by: 

 
( )

( )
4 2 eff

eff

i i

S

EI


 =  (20) 

The constants ( ), , ,j j j jA B C D  are determined 

by the beam end conditions:  

 ( ) ( )
3 *

*1
1 1 * 0*3

* 0

i
t i

x
x

d w x
K w x

dx
=

=


= −



 (21) 

 

 ( ) ( )2 * *

1 1

1*2 *
* *0 0

i i

x x

d w x dw x
K

dx dx


= =

=  (22) 

 ( ) ( )
3 *

*(N 1)
2 (N 1) **3 1

* 1

i
t i

x
x

d w x
K w x

dx

+
+

=
=


=



 (23) 

 ( ) ( )2 * *

(N 1) (N 1)

2*2 *
* *1 1

i i

x x

d w x dw x
K

dx dx


+ +

= =

= −
 (24) 

and the continuity and compatibility conditions at 

the thj  crack location j  [32]: 

 ( ) ( )* *
( 1) * *j i ji

x xj j

x xw w
 

−
= =

=  (25) 

 

2 2
( 1)

*2 *2
* *

d d

d d

j i ji

x xj j

w w

x x
 

−

= =

=  (26) 

 

3 3
( 1)

*3 *3
* *

d d

d d

j i ji

x xj j

w w

x x
 

−

= =

=  (27) 

 

2
( 1)

* * * *2
* * *

d d d

d d d

j i ji ji

x x xj j j

w w wL

x x K x  

−

= = =

= +  

 (28) 

where 
1tK , 

2tK , 
1K  and s are the stiffness of the 

transverse and rotational springs respectively. *K  is 

the non-dimensional local rigidity due to the crack, 

related to the local flexibility coefficient C of the 

rotational spring by : 

 * τK LL
K

CEI EI
= =  (29) 

Based on the matrix transfer method as well 

explained previously in [29], the specified 

conditions lead to a homogeneous linear system, 

which has a non-trivial solution if its determinant is 

set equal to zero. The resulting equation, solved 

iteratively using the Newton Raphson algorithm, 

leads to the beam natural frequencies. The 

corresponding mode shapes are then calculated by 

the usual algebraic procedure. 

 

2.4. Non-linear vibration analysis 

The Von Kàrmàn type non-linear strain-

displacement relationships are: 

 

2 2

2

1

2
x

u w w
z

x x x


   
= + − 
   

 (30) 

The elastic strain energy V  of the beam is given 

as: 

 
2

20

1
d

2

L

x x x

w
V N M x

x


 
= − 

  
  (31) 

With Eq. (3) always in mind, the strain energy V  

can be written now only in terms of the transverse 

displacement w  as follows: 

( ) ( )
2 22 2

eff eff

20 0
d

8 2

L LES EIw w
V x

L x x

     
 = +           
 

 (32) 

The kinetic energy T  and the strain energy of the 

crack 
cV  as mentioned in [32] are given by: 

 ( )
2

2

0
2

1
d

2

h
L

h

w
T z xd z

t






−

− −

 
=  

 
   (33) 

 
( )

2 2
eff

c 2
τ2

N
x xc

EI w
V

K x
=

 
=    

 (34) 

The potential energy associated to the force fV  

is given by [33]: 

 ( ) ( ),
Sf iV F x t w x dx=   (35) 

The harmonic force is uniformly distributed and 

equal to dF  respectively, excites the beam thi  mode 

by: 
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 ( ) ( ) ( ) ( )
0

sin sin
L

d d d
i i iF t F t w x dx f t = =  

 (36) 

Considering non-linear vibrations and assuming 

a harmonic motion, the transverse displacement is 

expressed as: 

 ( ) ( ) ( ), sin
i i

w x t a w x t=  (37) 

in which the 'ia s  are the unknown basic function 

contribution coefficients. Inserting Eq. (37) into Eqs. 

(32-35) and applying Hamilton's principle gives: 

 ( )
2

0
0c fV V V T dt



 + + − =  (38) 

and introducing the following dimensionless 

parameters: 

 ( ) ( )* * *x
w x hw hw x

L

 
= = 

 
 (39) 

A set of non-linear algebraic equations is then 

obtained: 

 
* * *2 * *2 3 2 1,...,i ir i j k ijkr i ir ia K a a a B a M F r n+ − = =

 (40) 

Where 
*

ijK , *

ijkl
B  and 

*

ijM  stand for the 

dimensionless classical rigidity tensor, the non-

linear rigidity tensor and the mass tensor, defined as: 

 

( )2 * 2 *2 * 2 *1
* *

*2 *2 *2 *2
0

τ1 **

d
N

j eff ji i

ij c

c xx

EIw ww w
x

x x K x x
K


= ==

  
= +

   


 (41) 

 

( )

( )

2 ** * *1 1
* * *eff

* * * *
0 0

eff

d d
4

ji k l

ijkl

R ES ww w w
x x

EI x x x x
B

     
=         

 

 (42) 

 
1

* * * *

0
ij i jM w w dx=   (43) 

The dimensionless generalized force *d

iF  is 

given by : 

 
( )

( )
4 1

* * * *

0
eff

d d
i i

L
F F w x dx

R EI
=   (44) 

Equation (40) may be written in a matrix form as: 

   ( )      * * *2 * *3

2
A B A A AK M F−+ =     

     

 (45) 

 

2.5. The multi-mode approach 

The last system Eq. (45) is similar to that 

obtained in [33]. It can be solved by the so-called 

second formulation [25], in order to obtain the beam 

non-linear forced vibration deflection shapes and 

frequency response curves at large vibration 

amplitudes. The basic idea behind this method 

consists on writing the contribution vector to the 

non-linear mode considered as 

   1 3 9, , ...,
T

A a  = , in which 
2  to 

n

representing the basic function with a small 

contribution compared to 
1a  that is the predominant 

basic functions contribution. Considering the 

expression 
*

i j k ijkra a a B  of Eq. (40), the third and 

second order terms with respect to 
i , i.e. terms of 

type 
*

i j k ijkrB    or of the type 
*

1 1i j ij ra B   are 

neglected, this leads to : 

 

 * 3 * 2 *
1 111 1 11i j k ijkr r i ira a a B a B a B= +  (46) 

 

Substituting and rearranging permits one to write Eq. 

(40) in a matrix form as: 

 

( )     * *2 * * * 3 *3 3

2 2
r r irrrK M A A F a B      − + = −     

 (47) 

In which *

I    is 9 9  square matrix, whose general 

term ij  equal to 
2 *

1 11ijBa , depends only on 
1a  which 

can be obtained as demonstrated before in [24,34] 

from the single-mode approach application. 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 

The numerical calculations of the present 

formulation have been made with a Matlab code. 

Through this program, it became possible to analyse 

the effects of the crack parameters such as the 

number, the location and the depth of the crack upon 

the vibration characteristics of cracked FGB. To test 

the validity and accuracy of the present analysis, 

following the approximated explicit method 

mentioned above in the case where the force is zero, 

the non-linear free vibration analysis is carried out 

and the numerical convergence is firstly performed. 

The first non-linear frequency ratios of a clamped-

clamped FGB with an edge crack computed by the 

classical Euler-Bernoulli beam theory are listed in 

Table 1 and compared to those obtained by 

Table 1: Comparison of the first non-linear frequency ratio 
* *

nl l   of a FGB with an edge crack 

maxw  0.2k =  1k =  5k =  

 Present [18] R. D % Present [18] R. D % Present [18] R. D % 

0.2 1.0146 1.0204 0.57 1.0120 1.0184 0.63 1.0133 1.0195 0.61 

0.4 1.0569 1.0800 2.14 1.0472 1.0713 2.25 1.0521 1.0755 2.18 

0.6 1.1247 1.1724 4.07 1.1039 1.1529 4.25 1.1145 1.1615 4.05 

R. D = |Present - [18] / [18]| 
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Timoshenko beam theory developed in [18] for 

various vibrations amplitudes corresponding to 

0.2h =  and 0.5j = . The following material and 

physical parameters are adopted: the top surface of 

the FGM 
1 70 GpaE = , 3

1 2780 Kg/m =  and 

slenderness ratio 10L h =  with 0.1 mh = . It is 

observed that the trend of the present results matched 

appropriately with that obtained in [18]. It should be 

noted that the FGB under investigation in the rest of 

the analysis, has slenderness ratio 20%L h =  with 

0.05 mh =  and that all the analysis will focus on the 

clamped ends obtained by taking 

1 2 1 2t tK K K K = = = =  . 

 

 

Fig. 2. Comparison between the non-linear 

frequency response curves of a C-C beam, 

based on the multi-mode approach obtained 

by present model and the exact solution 

 

In order to validate the proposed procedure in the 

case of non-linear forced vibrations, the non-linear 

response curves, obtained by the present model in 

the neighbourhood of the first non-linear mode 

shape, is compared in Figure 2 with that obtained 

previously by the exact solution in [33], for the case 

of C-C isotropic beam (in the present work 1k = ) 

excited by a harmonic concentrated force 500cF =  

applied at its middle with R I S=  (radius of 

gyration). It can be concluded that a supreme 

agreement can be observed. 

Before investigating the non-linear forced 

response of the cracked FGB, as described in the  

 

 

general formulation, it is necessary to determine the 

predominant mode excited in the case of a given 

distributed harmonic physical force, in order to 

justify the use of the multimode approach in its 

vicinity. Therefore, the percentages of the 

generalised distributed forces corresponding to the 

first five symmetrical modes, in the case of a C-C 

FGB with an edge crack at its center, applied over 

the whole beam span, corresponding to 5k =  are 

listed in Table 2. It can evidently be concluded that 

the force predominantly excites the first mode. 

 

 

Fig. 3. Comparison with the linear and non-

linear frequency response curves obtained by 

the single mode approach and the multimode 

approach of a C-C FGB with three edge 

cracks 

 

In Figure 3, a comparison is made between the 

linear and the non-linear frequency response curves 

obtained by the single-mode approach and the 

multimode approach of a C-C FGB with three edge 

cracks equitably distributed along the beam length, 

in the case when the FGB is excited by a harmonic 

distributed force 100dF =  along the whole cracked 

FGB, corresponding to (1,2,3) 0.1h = . As can be 

seen, considering the effect of geometric non-

linearity, the frequency response curve is increased 

and tends to the right showing the hardening 

behaviour. Furthermore, an important conclusion 

that can be deduced is that the two curves obtained 

in the non-linear analysis are very close to each other 

for maximum vibration amplitudes maxw R  up to 1.5 

Table 2. Percentages of generalised distributed forces exciting the first five symmetric modes of a C-C FGB with 

an edge crack at its center. 

Modes 1 3 5 7 9 

( )
1

*

0
iw x  8.2939E-01 3.6535E-01 2.3237E-01 1.7041E-01 1.3454E-01 

( ) ( )
1 1

* *

0 0
1

n

i i

i

w x w x

=

   48 21 13 10 8 
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and slight differences start to appear for higher 

vibration amplitudes. This fact provides a clear 

explanation for the small influence of the 

contributions of the higher functions on the 

frequency response, compared to those obtained by 

the single-mode approach. 

 

Fig. 4. The curvature distributions associated to the first nonlinear deflection response function of a C-C FGB 

with three cracks corresponding to various values of the materiel properties 

 

 

Fig. 5. The curvature distributions associated to the first nonlinear deflection response function of a C-C FGB 

having 5k =  with an edge crack corresponding to various values of the harmonic distributed force 

 

 

Fig. 6. The curvature distributions associated to the first nonlinear deflection response function of a C-C FGB 

having 0.2k =  with an edge crack corresponding to various values of the harmonic distributed force 
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The effect of a uniformly harmonic distributed 

force 100dF =  applied along the whole of the FGB 

with three cracks equitably distributed along the 

beam length corresponding to ( )1,2,3
0.3h =  and a 

maximum non-dimensional amplitudes up to more 

than once the beam thickness max 1.5w R = , for 

various values of materiel properties is depicted in 

Figure 4. It can be clearly observed that the nonlinear 

curvature distribution curve in the case of the FGB 

having material property 0.2k =  i.e. "top surface 

rich ceramic" is hardly affected and more showed 

exactly where the crack is located (at the beam 

center), compared to the FGB with 5k =  i.e. "top 

surface rich metal".  

The associated curvature distributions to the first 

nonlinear deflection obtained via the present model 

for a C-C FGB containing three edge cracks 

distributed along the beam length and excited by 

various values of a uniformly harmonic distributed 

force applied along the whole of the beam for both 

scenarios, when the FGB having material property 

5k =  and 0.2k =  respectively are plotted in Figure 

5 and 6, for maximum non-dimensional amplitudes 

max 1.5w R = , corresponding to ( )1,2,3
0.2h = . As 

can be seen, increasing the excitation level leads to 

 

Fig. 7. The curvature distributions associated to the first nonlinear deflection response function of a C-C FGB 

with three cracks corresponding to various values of the vibration amplitudes 

Table 3. Effect of force variation on the percentage correction introduced by the non-linear theory compared to the 

linear theory 

   
( )2 20d w dx  

% 
( )2 21 2d w dx  

% 

Lin NL Lin NL 

max 1.5w =  

5k =  

0dF =  41.41 55.19 24.97 24.43 21.05 16.06 

100dF =  42.61 56.08 24.02 24.19 20.85 16.02 

200dF =  43.51 56.91 23.55 23.78 20.64 15.21 

0.2k =  

0dF =  40.66 55.36 26.55 23.39 19.57 20.13 

100dF =  42.06 56.23 25.20 23.18 19.36 19.73 

200dF =  43.1 57.13 24.56 22.78 19.15 18.96 

 

Table 4. Effect of vibration amplitude on the percentage correction introduced by the non-linear theory compared to the 

linear theory 

   
( )2 20d w dx  

% 
( )2 21 2d w dx  

% 

Lin NL Lin NL 

100dF =  

5k =  

max 0.5w =  14.66 15.28 4.06 7.33 7.15 2.52 

max 1w =  28.36 32.92 13.85 15.14 13.67 10.75 

max 1.5w =  41.83 56.37 25.79 22.81 18.85 21.01 

0.2k =  

max 0.5w =  14.19 14.86 4.51 6.543 6.294 3.96 

max 1w =  27.36 32.83 16.66 13.55 11.79 14.93 

max 1.5w =  39.93 57.06 30.02 20.33 15.73 29.24 
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an increase in the stress near to the clamps, on the 

contrary a decrease in the middle of the cracked 

FGB.  

Our simulation brings also an important results 

listed in Table 3, about the effect of the distributed 

force variation on the percentage of correction 

introduced by taking into account the geometric non-

linearity effect in the analysis compared to the linear 

case. It has been found that when the intensity of the 

applied force increases, the percentage of correction 

decreases at both, near to the clamps and the middle 

of the cracked FGB and remains always higher in the 

case of a FGB with 0.2k =  compared to a FGB with 

5k = . 

The effect of the vibration amplitudes on the non-

linear curvature distribution associated to the non-

linear deflection shapes, of a C-C FGB with three 

cracks equitably distributed along the beam length 

subjected to a uniformly harmonic distributed force 

100dF =  corresponding to ( )1,2,3
0.3h =  in the 

two scenarios of the FGB is plotted in Fig. 7. This 

figure clearly shows the influence of the nonlinear 

effect as expected, i.e. the increase in the stress 

distribution in accordance with the increase of the 

vibration amplitude, especially at the middle of the 

beam and in the regions of the clamps. It is also 

noticeable that the shape of the curvature changes 

and more specifically in the middle where the crack 

is located for the case of a FGB with 0.2k =  

compared to that of a FGB with 5k = , which 

implies that the FGB becomes slightly flexible when 

the crack starts to propagate in the totally surface rich 

ceramic. As can be seen from Table 4, the percentage 

of correction introduced by the non-linear theory 

compared to the linear theory increases by increasing 

the vibration amplitude either in the middle of the 

beam or in the region of the clamps, and also shows 

us that there is no proportionality on the stress 

variation with the amplitude variation contrary to the 

linear case because the principle of supposition 

applied in this domain remains invalid and remains 

completely fails to predict the correct behaviour of 

the beam response at large vibration amplitudes.  

Figure 8 shows the effect of crack depth on the 

non-linear curvature distributions of a C-C FGB with 

three cracks equitably distributed along the FGB 

length excited by a uniformly harmonic distributed 

force 100dF =  vibrating with significantly large 

amplitude max 1.5w R = . It is well noticed that the 

evolution of the crack depth is rather important and 

Table 5. Effect of crack depth on the percentage correction introduced by the non-linear theory compared to the 

linear theory 

   
( )2 20d w dx  

% 
( )2 21 2d w dx  

% 

Lin NL Lin NL 

100dF =  

5k =  

0c j
h =  42.43 56.22 24.53 24.91 22.69 9.78 

0.3c j
h =  41.02 56.45 27.33 22.35 18.87 18.44 

0.4c j
h =  39.87 57.09 30.16 20.46 16.13 26.84 

0.2k =  

0c j
h =  42.43 56.22 24.53 24.91 22.69 9.78 

0.3c j
h =  40.32 57.28 29.61 20.53 15.76 30.27 

0.4c j
h =  38.32 59.03 35.08 17.42 11.38 53.08 

 

 

Fig. 8. The curvature distributions associated to the first nonlinear deflection response function of a C-C FGB 

with three cracks corresponding to various values of the crack depth 
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became more pronounced in the case of a FGB with 

0.2k =  compared to that of a FGB with 5k = , the 

curvature decreases at the crack location when the 

crack depth increases, this clearly states that this 

phenomenon “softening” is caused by the flexibility 

of the beam. On the other hand, an inverted variation 

of curvature is obtained here at the regions of the 

clamps in which the curvature increases with 

increasing depth in the non-linear case and decreases 

in the linear case. It can also be deduced from the 

Table 5 that the crack depth effect increases the 

percentage correction of the curvature variation at 

the clamps regions and decreases it in the middle of 

the beam where the crack is located. The effect of a 

uniformly harmonic distributed force 

A peculiar phenomenon can be also observed in 

Fig. 9, showing the effect of the crack number 

equitably distributed along the beam length with 

value of crack depth 0.3h =  on the non-linear 

curvature distributions corresponding to a FGB 

excited by a uniformly distributed force 100dF = . 

The variation of crack number is obviously noticed 

especially for the beam having material index 

0.2k =  compared to FGB with 5k = , and it can be 

concluded that the crack has more effect when it is 

located in the middle comparing when it is located at 

the points considered as nodes. 

 

CONCLUSION 

 

The semi-analytical approach to the non-linear 

dynamic response of beams based on a multi-mode 

analysis previously developed by Benamar and co-

workers has been applied in the present study to the 

non-linear forced vibration of functionally graded 

beams with multi-cracks subjected to a harmonic 

force for the clamped boundary conditions case. A 

homogenization procedure has been proposed based 

on the neutral surface approach leading to a 

simplified formulation of the non-linear problem 

which is reduced to that of an equivalent isotropic 

homogeneous multi-cracked beam without altering 

the accuracy of the method of analysis. A numerical 

solution using a simplified approximate method (the 

so-called second formulation) enabled the non-linear 

multimode frequency response function to be 

obtained as a solution of the multi-dimensional 

Duffing equation. This permitted later to obtain the 

non-linear forced deflection shapes and associated 

curvatures of multi-cracked FGB.  

A comparison of the response curve of an intact 

isotropic beam subjected to a concentrated force 

with that obtained by an exact solution is carried out 

in order to test the validity of the proposed  method. 

An excellent agreement had been observed. 

In addition, the accuracy and convergence of the 

present model and of the crack modelling using the 

classical Euler-Bernoulli beam theory are validated 

by comparison with the literature results obtained by 

the Timoshenko beam theory in the case of a fully 

clamped FGB having an edge crack. An appropriate 

correspondence has been obtained in the tendency of 

the first non-linear frequency ratios according to the 

increase of the crack depth. 

A parametric study and numerical results are also 

given in the form of bending moment distributions 

or curvatures allowing the analysis of numerous 

effects such as the material property, the presence of 

the crack and the applied harmonic distributed force 

on the non-linear dynamic response which can be 

useful in the prediction of the fatigue life of a 

functionally graded beam containing multi-cracks 

and subjected to large vibration amplitudes, 

providing a quantitative estimate of the percentage 

correction introduced by the non-linear theory 

compared to the linear theory. 
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