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Abstract  

In this paper, a semi-analytical approach is proposed for free vibration analysis of a multi-span, ortho-

tropic bridge deck with rubber bearings. This allows more realistic modeling of vibration transmission from a 

bridge’s deck to its supports. The approach is based on modal superposition incorporating intermodal cou-

pling. The bridge deck was modeled as a continuous, multi-span, orthotropic rectangular plate with equivalent 

rigidities. The rubber bearings were inserted between the girders and rigid supports to absorb traffic induced 

vibrations. The rubber bearing was modeled by linear elastic, vertical supports as very flexible in rotation and 

highly rigid in the vertical direction. The method’s efficacy was validated against two numerical examples. 

The absolute error was less than 10%. 
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1. INTRODUCTION 
 

Understanding free vibrations of multi-span 

roadway bridge decks is an essential step in study-

ing the forced vibrations under traffic loading. To 

date, several types of bridge deck sections have 

been accurately homogenized as orthotropic plates 

with equivalent rigidities [1,2].  Prominent amongst 

these are the early contributions by Timoshenko 

and Woinowsky [3] and Leissa [4] on continuous 

rectangular plates, plates on elastic foundations, and 

the bending of anisotropic plates. More recently, 

Zhu and Law [5] modeled a moving load on a mul-

ti-span, continuous Euler-Bernoulli beam with 

elastic bearings. In that work, each bearing was 

modeled with vertical and rotational stiffness. To 

quantify the moving load, a method based on modal 

superposition was combined with a regularization 

technique using different types of measured re-

sponses. The authors concluded that vertical sup-

port stiffness strongly influenced the identified 

loads when the beam’s flexural stiffness was small. 

Lin and Chang [6] adopted a hybrid analyti-

cal/numerical method to study the free vibration of 

a continuous, multi-span, Timoshenko beam, simp-

ly supported at its ends with intermediate flexible 

supports. In that work, two sets of equations of 

motion were written for each segment:  one for the 

vertical displacement and one for the slope. The 

application of the boundary and compatibility con-

ditions yielded the characteristic polynomial which 

was not increased in degrees, despite the larger 

number of intermediate supports. In not unrelated 

work, Li et al. [7] developed an analytical method 

to determine natural frequencies and mode shapes 

of a rectangular single-span, isotropic thin plate 

with all edges having uniform elastic supports (i.e. 

elastically restrained). In that, the vertical dis-

placement of the plate was expressed as a combina-

tion of several Fourier series expansions, which 

satisfied both the equation of motion and the 

boundary conditions at all edges. This general 

method is applicable to a variety of classical cases, 

as demonstrated by the strong agreement with pre-

viously published finite element modeling (Taka-

batake and Nagareda [8]). Li et al. [7] claimed that 

that method could be extended to non-uniform, 

restrained points, partial supports, and combina-

tions of those. In the previously referenced work of 

Takabatake and Nagareda [8], those authors devel-

oped a simplified, analytical method to analyze 

static, free, and forced vibrations of a thin, iso-

tropic, rectangular plate with edge beams. The 

boundary conditions of the plate were supported 

with edge beams (as previously solved by Vinson 

[9]) and then replaced with edges elastically re-

strained against translation and rotation. Takabatake 

and Nagreda [8] used the Galerkin method for static 

analysis of the plate. Good agreement was seen, 

when the closed form approximation was compared 
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to a FEM model. Cheung and Zhou [10] also inves-

tigated free vibrations of orthotropic, thin, rectangu-

lar plates with intermediate, elastic, line-supports in 

two directions and with edge constraints. That study 

was based on static beam functions along the x- and 

y-directions in the Rayleigh-Ritz method. Notably 

their decomposition of mode shapes did not incor-

porate the intermodal coupling caused by the mixed 

derivatives that appear in the formulation of free 

edge plate conditions [11]. In affiliated work, a 

semi-analytical approach to determine natural fre-

quencies and mode shapes of an orthotropic, multi-

span plate with rigid line supports was introduced 

by Rezaiguia and Laefer [12] and Rezaiguia et al. 

[13] based on modal superposition and the inclu-

sion of intermodal coupling. When compared to 

FEM models, the mode shapes matched, and the 

frequencies were within 2%, despite the approach’s 

comparative simplicity, thereby making it a good 

candidate to study the dynamic interaction between 

bridge decks and vehicles. In commercial bridge 

design, rubber supports are modelled as a two-joint 

link aligned vertically, in such a way that one end is 

connected to the bridge deck and the other end is 

fixed as per Kunde and Jangid [14]. 

The following research extends modal superposi-

tion with the intermodal coupling approach [12, 13] 

through the inclusion of elastic, line supports. Spe-

cifically, the vertical displacement of the plate is 

obtained by modal superposition. The mode shapes 

are decoupled, as the product of two admissible 

functions. In the longitudinal direction, natural 

frequencies and mode shapes are obtained using 

boundary and continuity conditions. In the transver-

sal direction, the mode shapes of the plate are pre-

sented with a function satisfying exact boundary 

conditions of the free plate to take into account the 

intermodal coupling. 
 

2. MATHEMATICAL MODELING 

 

During the construction of the roadway bridges, 

an elastomeric restraining device, called rubber 

bearing, is inserted between the girders and the 

rigid supports to bring more flexibility to the struc-

ture. (Fig. 1). When a slab rests on rubber bearings, 

the bearing provides most of the structure’s flexibil-

ity. Thus, incorporating them into the dynamic 

model is critical for correctly calculating the natural 

periods. The bearing has the capability of absorbing 

applied forces vertically and horizontally and is 

very effective in reducing the structure’s response 

to seismic loading by reducing natural frequencies. 

This is done by providing more flexibility to the 

slab and extending the condition of the head of the 

piles longer than would otherwise be possible. In 

addition, in case of damage or deterioration should 

occur, the rubber bearing is relatively easy to 

change.  

In the vast majority of cases, the rubber bearing 

can be considered as highly rigid in the vertical 

direction and very flexible in rotation [15]. The 

bearing has the capability of absorbing vertically 

and horizontally applied forces and is very effective 

in reducing the structure’s response to seismic 

loading. Consequently, its inclusion in a mathemat-

ical model is needed for generating realistic re-

sponses. Specifically, rubber can be modeled by 

stiffness and damping. Stiffness must be considered 

in the free vibrations, because the natural frequen-

cies and mode shapes without damping of the 

bridge deck are needed to calculate the forced vi-

bration response. Damping of both the bridge deck 

and rubber bearing must be considered in the forced 

vibrations. The damping of the bridge deck and the 

rubber bearings are taken into account through the 

forced vibrations.  

 

 
 

Fig. 1. Longitudinal section of a bridge with 

rubber bearings [15] 

 

In this study, a bridge deck is modeled by a thin, 

orthotropic, rectangular plate of length l, width b, 

thickness h, and density  , supported by several 

elastic, line supports (Fig. 2). All supports are per-

pendicular to the free edges of the bridge deck. Free 

vibrations without damping of the bridge deck are 

governed by the following homogeneous differen-

tial eq.(1):

 
2 4 4 4

2 4 2 2 4
2 0x y

w w w w
h D H D

t x x y y


   
   

    
           (1) 

In equation (1), w(x,y,t) is the vertical displacement 

of the bridge deck, Dx=Exh
3/12(1-xyyx)

 
is the 

flexural rigidity in the x-direction, , Dy=DxEy/Ex is 

the flexural rigidity in the y-direction, 

H=xyDy+2Dxy is the equivalent flexural rigidity, xy 

and yx
 

are the Poisson’s ratio in the x- and y-

directions, respectively, Dxy=Gxyh
3/12

 
is the tor-

sional rigidity, Gxy is the shear modulus, and Ex and 

Ey are the Young's moduli in the x- and y-directions, 

respectively. Using the modal superposition meth-

od, the vertical displacement of the bridge deck in 

free vibrations is written as eq.(2): 

   
1 1

, , ,  ij

n m
J t

ij ij

i j

w x y t a W x y e


 

        (2) 

 

where ij and Wij(x,y) are the natural frequencies 

and mode shapes of the multi-span bridge deck with 

elastic supports, respectively, aij are the modal 

amplitudes, and 1J , n and m are the mode 

numbers following x and y, respectively [necessary 

for convergence of the modal series in eq. (2), 

Rubber  

bearings  
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which can be excited in practice]. Substituting eq. 

(2) into eq. (1) yields: 

4

2

4
1 1

4 4

2 2 4
                     2 0ij

n m
ij

ij ij ij x

i j

J tij ij

y

W
a h W D

x

W W
H D e

x y y



 
 

 
  



 
 

   

 (3) 

 

To determine the natural frequencies and mode 

shapes of the bridge deck, requires solving the 

following spatial differential eq. (4): 

02 2

4

4

22

4

4

4















ijij

ij

y

ijij

x Wh
y

W
D

yx

W
H

x

W
D   (4) 

To incorporate the intermodal coupling, the solu-

tion adopted herein for eq. (4) is that which was 

previously proposed [12,13], where Wij(x,y) is ex-

pressed as the product of two admissible functions: 

i(x) are eigenfunctions of multi-span continuous 

beam with flexible supports, and hij(y) are eigen-

functions of a single span beam satisfying the 

boundary conditions of a plate. This decomposition 

may be expressed as eq. (5). 

( , ) ( ) ( )ij i ijW x y x h y                       (5) 

 
 

Fig. 2. Multi-span bridge deck with elastic linear supports 

 

 

2.1. Natural frequencies and mode shapes of a 

multi-span beam with elastic supports  
In the longitudinal direction x, the bridge deck 

is modelled by as an Euler-Bernoulli beam of 

length l, Young modulus Ex, mass per unit length 

A, and moment of inertia I. The beam is divided 

into R-span of lengths l1, l2, ..., lR, respectively (Fig. 

3). The supports are modelled by linear springs of 

rigidities k1 , k2 , …, kR+1 respectively. To determine 

the mode shapes of a multi-span beam with elastic 

supports requires determining the mode shapes of 

each span by incorporating the boundary conditions 

and continuity conditions at intermediate supports. 

The expression of the ith mode shapes in the rth span 

is given by eq.(6) where the index i is omitted for 

terms  ri , Ari , Bri ,  Cri ,  Dri and i : 

  sin cos

                                           +         1,  2, ..., 

r r r r r r r r

r r

x A x B x C sh x

D ch x r R

   



  



  (6) 

rA  , 
rB  , 

rC
 
and 

rD  are constants to be determined 

by the application of boundary and continuity con-

ditions, and   is a frequency parameter of the mul-

ti-span beam. Zhu and Law [5] presented the for-

mulation of the eigenfunctions and mode shapes of 

a multi-span, continuous beam with rotational and 

linear springs. In the study herein, the rotational 

spring is neglected, because the rubber bearing is 

very flexible in rotation [15]. 

 

At the left end of the beam, the shear force must 

equal the spring force that models the support, and 

the bending moment must be zero:  

 
 

1

1

3

1 1

1 1 13 0
1 0

  x x

x

d x
E I k x

dx








            (7) 

 

1

2

1 1

2

1 0

0      x

x

d x
E I

dx





            (8) 

At intermediate supports r = 2, …, R, the compati-

bility of shear forces and bending moments and the 

continuity of displacements and slopes are illustrat-

ed, respectively, by eq. (9-12): 

 

 
 

Fig. 3. Multi-span beam with elastic point supports 
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1 1

1 1

3

1 1
1 13

1

3

3

0

( )
  ( 1)  ( )

( )
                                                      

r r

r r

r

rr r
x r r r x l

r x l

r r
x

r x

d x
E I k x

dx

d x
E I

dx






 

 

 
  

 



 



(9) 

1 1

2 2

1 1

2 2

1 0

( ) ( )
       

r r r

r r r r
x x

r rx l x

d x d x
E I E I

dx dx

 

 

 

  



     

(10) 

1 1
1 1 0
( ) ( )

r r r
r r r rx l x

x x 
 

   
         (11) 

1 1

1 1

1 0

( ) ( )
 

r r r

r r r r

r rx l x

d x d x

dx dx

 

 

 

  

             (12) 

At the right end of the beam, the shear force must 

equal the force in the spring that models the sup-

port, and the bending moment must be zero:  
3

1

13

( )
  ( 1) ( )

R R

R R

RR R
x R R R x l

R x l

d x
E I k x

dx




 



     (13) 

 

          

2

2

( )
 0

R R

R R
x

R x l

d x
E I

dx





           (14) 

After incorporating the conditions in eq. (7-14) into 

eq. (6), simplifying and regrouping, the system in 

eq. (15) is obtained: 

    0F A                       (15) 

where the individual elements of the matrix [F] and 

vector {A} are presented in Appendix A. 

 

2.2. Natural frequencies and mode shapes of 

free-free orthotropic plate 

To incorporate the intermodal coupling, the 

mode shapes in the y-direction are presented as the 

function hij(y), thus satisfying the boundary condi-

tions of a plate at the free edges y = 0 and y = b. 

Determination of the function hij(y) is presented in 

detail elsewhere [i.e.12-13]. To clarify this for the 

reader, a summary of the approach in which the 

function hij(y) is obtained is presented. Specifically, 

the differential eq. (4) must be satisfied for all val-

ues of x, but determining its resolution for every 

value of x is practically impossible to achieve. For 

this reason, eq. (5) is substituted into eq. (4) and 

then multiplied by i(x) and integrated over the 

bridge length. From this, one obtains eq. (16): 

 

4 2

2

4 20 0

4 2 2

0

2

                        0

l lij ij

y i i i

l

ijx i ij i

d h d h
D dx H dx

dy dy

D h h dx

 

   



  

 



      (16) 

Dividing eq. (16) by 
l

iy dxD
0

2 , one obtains 

( 2
ii i    ):  

  
4 22

4 21

4 2

2
0

ij iji
ijx i ij y

y

d h d hH
D h D h

dy D dy


        (17) 

with a new frequency parameter eq. (18): 

2

1
0 0

/
l l

i i i i idx dx                        (18) 

Hence, the solution of eq. (17) is given by the gen-

eral form in eq. (19): 

  ys

ijij
ijeAyh                            (19) 

Substituting expression (19) into eq. (17), one ob-

tains eq. (20): 
4 22

4 212
0

x i iji
ij ij

y y

D hH
s s

D D

    
    

 

     (20) 

The roots of eq. (20) are eq. (21) and eq. (22):  

 2 2 4 4 2

1 1 1 1

1
 ij i i y x i ij ij

y

s Hk H D D h r
D

           (21) 

 2 2 4 4 2

2 1 1 2

1
  ij i i y x i ij ij

y

s J H H D D h Jr
D

            (22) 

Note that the parameters r
1ij and r

2ij are not inde-

pendent but are instead, related by the pulsations 

ω
ij
. By substituting eq.s (21 and 22) into eq. (19) 

and replacing the exponential functions by trigo-

nometric and hyperbolic functions, one obtains eq. 

(23): 

2 2

1 1

( ) sin  cos  

                + sinh  cosh  

ij ij ij ij ij

ij ij ij ij

h y C r y D r y

E r y F r y

 


  (23) 

where Cij, Dij, Eij and Fij are new constants of inte-

gration. They are determined by the application of 

the boundary conditions at the free edges of the 

bridge deck: y = 0 and y = b. At these edges, the 

bending moment and the shear force are zero. Tak-

ing into account eq (5), these boundary conditions 

are eqs. (24-27):  
2

2

12

0

0
ij

y yx x i ij

y

d h
D D h

dy
 



 
   

 

             (24) 

 
3

2

13

0

4  0
ij ij

y yx x xy i

y

d h dh
D D D

dy dy
 



 
    

 

    (25) 

2

2

12
0

ij

y yx x i ij

y b

d h
D D h

dy
 



 
   

 

           (26) 

 
3

2

13
4  0

ij ij

y yx x xy i

y b

d h dh
D D D

dy dy
 



 
    

 

   (27) 

The application of the boundary conditions from 

eqs. (24-27) in eq. (23) gives the matrices shown in 

eq. (28): 

2 2 1 1

2 2 1 1

0 0 0

0 0 0

sin  cos       0

cos   sin      0

ijij ij

ijij ij

ijij ij ij ij ij ij ij ij

ijij ij ij ij ij ij ij ij

C

D

r b r b sh r b ch r b E

r b r b ch r b sh r b F

 

 

   

   

     
     

        
 

   
 

         

  (28) 

with the intermediate parameters: 
2 2

2 1ij y ij yx x iD r D                      (29) 

2 2

1 1ij y ij yx x iD r D                       (30) 

3 2

2 2 1( 4 ) ij y ij yx x xy ij iD r D D r            (31) 

3 2

1 1 1( 4 ) ij y ij yx x xy ij iD r D D r             (32) 

For non-trivial solutions of the system (28), the 

frequency equation is eq. (33): 
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2 1

2 2 2 2

2 1

2  ( 1 cos   cosh  )

           ( ) sin   sinh  0

ij ij ij ij ij ij

ij ij ij ij ij ij

r b r b

r b r b

   

   

 

  
   (33) 

The parameters r
1ij

 or r
2ij

 can be solved from eq. 

(33), while the natural frequency ij can be ob-

tained from expressions (21) and (22). To deter-

mine expressions of the new constants of integra-

tion, one simplifies the system (28) by normalizing 

the first component Cij of the unknown vector by 1, 

thereby reducing the problem to 4 equations with 3 

unknowns, from which one obtains the expressions 

for the constants D
ij
, E

ij
, and F

ij 
eq. (34-36): 

2 1

1 2

 ( sin  sinh  ) /

                       (cosh  cos  )

ij ij

ij ij ij ij

ij

ij ij ij

D r b r b

r b r b

 






 



    (34) 

 /ij ij ijE                                (35) 

2 1

1 2

(  sin  sinh  ) /

                              (  cosh  cos  )

ij ij

ij ij ij ij

ij

ij ij ij ij

F r b r b

r b r b

 




 

  



    (36) 

To calculate the natural frequencies ij of the multi-

span orthotropic bridge deck, first 
I values were 

calculated. Next the 
1i 

values were determined 

using eq. (18). Subsequently, the roots r
1ij 

or r
2ij of 

the frequency eq. (33) were obtained using Mathe-

matica software. Finally, natural frequencies of the 

multi-span bridge deck ij  were calculated by eq. 

(21-22). 

 

3. NUMERICAL VALIDATION EXAMPLE 

 

 To validate the method developed in this paper, 

a numerical example of an Euler-Bernoulli beam 

with two equal spans with elastic supports is pre-

sented (Fig. 4). The beam is of length l = 5 m; 

width b = 0.05 m; thickness h = 0.05 m; density  = 

7800 kg/m3; Poisson’s ratio  = 0.3; and Young’s 

modulus Ex = 2.06×1011 N/m2 [6]. In this study, the 

method of obtaining the frequency parameters
i  is 

based on searching for a non-trivial solution of the 

determinant of the matrix of the system in eq. (15). 

This non-linear algebraic equation can be solved in 

Mathematica software.  

 

 
Fig. 4. Beam with two equal spans with elastic 

point supports 

 

Table 1 presents a comparison between the first 

four natural frequencies of the beam, calculated by 

the present method with those presented by Lin and 

Chang [6], who employed Timoshenko’s beam 

theory to calculate the natural frequencies and 

mode shapes of a continuous, multi-span beam, 

simply supported at the ends with flexible interme-

diate supports, using a hybrid analytical/numerical 

method. The comparison shows a slight difference 

between the frequencies. This may be due to the 

differences between theory and the applied method. 

 

Figure 5 shows the variation of the first four mode 

shapes of the beam for different values of the in-

termediate stiffness support k2. The same modes 

were obtained as those in [6]. For Fig. 5 (a) (k2 = 0), 

the mode shapes are identical to those of a beam on 

two simple supports. When the rigidity of the in-

termediate support becomes very high (k2 = 1020 

N/m), the mode shapes are those of a beam on three 

rigid supports (Fig. 5 (d)). For example, the vertical 

stiffness of a rubber bearing is calculated to be 

about 11.55 × 107 N/m2 [15]. 

 

Table 1. Comparison of calculated natural frequencies of the beam 2 / 2i i xf E I A    in [Hz] with results from the Lin 

and Chang [6] method shown in parentheses 

Frequency order k2 = 0 N/m* k2 = 107 N/m k2 = 108 N/m k2 = 1020 N/m 

      f 1 4.661 

(------) 

18.643 

(18.738) 

18.643 

(18.738) 

18.643 

(18.614) 

      f 2 18.642 

(------) 

27.884 

(28.004) 

29.000 

(29.143) 

29.123 

(29.122) 

       f 3 41.946 

(------) 

74.570 

(74.802) 

74.570 

(74.802) 

74.570 

(74.566) 

       f 4  74.570 

(-------) 

80.251 

(80.317) 

93.052 

(93.306) 

94.377 

(94.362) 

 * k1 = k3 = 1020 N/m. 

 

 
 

l1 

 

l2 

 

1 

 

x1 

 

2 

 
x2 

 

o 

k1 k2 k3 

x 
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Fig. 5. Variation of the first four mode shapes of the beam for different values of the stiffness of the intermediate 

support, k1 = k3 = 1020 N/m, (a) : k2 = 0, (b) : k2 = 8×105 N/m, (c) : k2 = 106 N/m, (d) : k2 = 1020 N/m 

 

 

4. APPLICATION TO TWO-SPAN, MULTI- 

GIRDER BRIDGE DECK 

 

A cross-section of a continuous, two-span, mul-

ti-girder bridge is shown in Figs. 6 from [16]. This 

is used as an example of a concrete isotropic deck 

slab with five, steel, I-beam girders. The concrete 

deck slab was of length l = 40 m; width b = 11 m; 

thickness h = 0.2 m; density  = 2300 kg/m3; Pois-

son’s ratio  = 0.33, Young's modulus E = 2.1×1010 

N/m2, and torsional rigidity modulus G = 78.9473 

×108 N/m2. The distance between two adjacent 

girders was b1 = 2.25 m. The stiffness ratio was s = 

0.01255. The coefficient of equivalent torsional 

moment of inertia was α = 0.3. The section charac-

teristics of each I-beam girder were (Fig. 7):  web 

height; n1 = 1.13 m; web thickness; m1 = 0.175 m; 

flange width 0.55 m; flange thickness 0.18 m; and 

quadratic moment I = 0.118 m4.  

The equivalent rigidities in the x- and y-

directions of the orthotropic bridge deck are calcu-

lated using the following expressions [16]:  

 

 

 

 
 

Fig. 6. Cross section of the bridge deck 

 

 
Fig. 7. Steel I-Beam details 

 

0
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     m1= 0.175 m 
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0
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5
 m

 

b1 = 2.25 m 

y 

z 
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To calculate the natural frequencies ij of the 

equivalent orthotropic bridge deck, first the values 

of i were calculated. Then the solutions of the 

characteristic equation of the system matrix (15) 

were solved using Mathematica software. Next, the 

frequency parameters 1i were obtained using eq. 

(18). Then the frequency parameters r1ij or r2ij were 

solved via eq. (33) using Mathematica. Finally, the 

natural frequencies ij were calculated using eqs. 

(21-22). 

Table 2 shows a comparison between the first ten 

natural frequencies of the orthotropic bridge deck 

calculated by this approach and those calculated by 

ANSYS. The bridge deck was modeled with the 

finite element type Shell 63 with four nodes and six 

degrees of freedom per node (Fig. 8). Three mesh 

density levels were tested: 200 × 55; 240 × 66; and 

280 × 77 elements. The comparison of results 

shows good agreement for all frequencies (Table 2). 

Table 2. Mesh density convergence and comparison of natural frequencies in (Hz) of the bridge deck 

Mode 
ANSYS 

Proposed approach Error % 

200×55 240×66 280×77 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.355 

3.553 

5.026 

5.242 

5.392 

6.515 

9.270 

10.214 

13.422 

13.622 

3.355 

3.553 

5.025 

5.242 

5.392 

6.514 

9.264 

10.208 

13.422 

13.622 

3.355 

3.553 

5.024 

5.242 

5.392 

6.513 

9.260 

10.204 

13.423 

13.623 

3.357 

3.553 

5.022 

5.244 

5.442 

6.594 

9.248 

10.267 

13.427 

13.623 

0.2 

0.0 

0.2 

0.2 

5.0 

8.1 

1.2 

6.7 

0.4 

0.0 

 

 

 
 

 

Fig. 8. Finite element model created in ANSYS for evaluating natural frequencies and modes shapes of the ortho-

tropic two-span bridge deck 

 

Figure 9 represents the first six mode shapes of 

the bridge deck calculated by the proposed ap-

proach. Each mode shape is defined by a double 

index ij according to x and y, respectively. The first 

mode shape of lower frequency, f11 = 3.357 Hz is a 

bending mode, which does not present any nodal 

line. All points of the bridge deck vibrate in phase, 

in this mode. The second frequency mode (f12 = 

3.553 Hz) is a torsional mode, which has a nodal 

line at y = 5.5 m. This is a characteristic of solu-

tions that are obtained as a separable, space varia-

ble. Note that the bending modes are of rank j = 1. 

The others are torsion modes. Several torsion 

modes appear before bending modes, because the 
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torsional rigidity is lower than bending rigidity. 

Increasing the order of the torsional mode increases 

the number of modal lines. Figure 10 shows the 

first six natural mode shapes of the bridge deck 

calculated by ANSYS.

 

 

 
Mode 1: f1,1 = 3.357 Hz 

 
Mode 2: f1,2 = 3.553 Hz 

 
Mode 3: f1,3 = 5.022 Hz 

 
Mode 4: f2,1 = 5.244 Hz 

 
Mode 5: f2,2 = 5.442 Hz 

 
Mode 6: f2,3 = 6.594 Hz 

 

Fig. 9. The first six natural mode shapes of the bridge deck, calculated by the proposed approach 
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Mode 1: f1,1 = 3.355 Hz 

 

Mode 2: f1,2 = 3.553 Hz 

 

Mode 3: f1,3 = 5.024 Hz 

 

Mode 4: f2,1 = 5.242 Hz 

 

Mode 5: f2,2 = 5.392 Hz 

 

Mode 6: f2,3 = 6.513 Hz 

Fig. 10. The first six natural mode shapes of the bridge deck, calculated by ANSYS 

 

5. CONCLUSIONS 

 

A semi-analytical approach for the calculation 

of natural frequencies and mode shapes of a bridge 

deck with rubber bearings was presented. In that, 

the bridge deck is simplified as a continuous, multi-

span, orthotropic, rectangular plate with equivalent 

properties and with linear-elastic supports in one 

direction. The proposed approach was based on the 

modal superposition technique combined with 

intermodal coupling. Two numerical examples were 

validated upon which the following conclusions 

were made: 

 Results of a two-span Euler-Bernoulli beam 

were in good agreement with those obtained by 

Lin and Chang [6]; 

 When the stiffness of the rubber bearing was 

small, the effects on the natural frequencies 

were very large, and the converse is true: low 

stiffnesses had only small effects on the natural 

frequencies. 

 Results of a two-span, orthotropic, bridge deck 

were in good agreement with those obtained via 

an ANSYS analysis. 

In reality, the rubber bearings along the y-direction 

are not distributed but, instead, are located beneath 
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each girder. This more precise modeling will be the 

subject of future work. 

 

APPENDIX A 

 

The elements of vector  A  are given by: 

   1 1 1 1, , , ,..., , , ,
T

R R R RA A B C D A B C D  

and the elements of matrix  F  are given by: 

3 3

11 12 1 13 14 1 ,    ,   , x xf E I f k f E I f k       
 

2 2

22 24   ,   x xf E I f E I     

For r = 2, 3, …, R: 
3

4( 2) 3,4( 2) 1 1 1

3

4( 2) 3,4( 2) 2 1 1

3

4( 2) 3,4( 2) 3 1 1

3

4( 2) 3,4( 2) 4 1 1

4(

cos  ( 1) sin

sin  ( 1) cos

 ( 1)

 ( 1)

r

r r x r r r

r

r r x r r r

r

r r x r r r

r

r r x r r r

r

f E I l k l

f E I l k l

f E I ch l k sh l

f E I sh l k ch l

f
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  

  

  

     

     

     
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

  

   

   

   

3

2) 3,4( 2) 5

3

4( 2) 3,4( 2) 7

r x

r r x

E I

f E I





  

   

 



   

 

2

4( 2) 4,4( 2) 1 1

2

4( 2) 4,4( 2) 2 1

2

4( 2) 4,4( 2) 3 1

2

4( 2) 4,4( 2) 4 1

2

4( 2) 4,4( 2) 6

2

4( 2) 4,4( 2) 8

sin  

cos  

 

 

r r x r

r r x r

r r x r

r r x r

r r x

r r x

f E I l

f E I l

f E I sh l

f E I ch l

f E I

f E I

 

 

 

 





    

    

    

    

   

   





 

 

 



 

4( 2) 5,4( 2) 1 1

4( 2) 5,4( 2) 2 1

4( 2) 5,4( 2) 3 1

4( 2) 5,4( 2) 4 1

4( 2) 5,4( 2) 6

4( 2) 5,4( 2) 8

sin  

cos  

 

 

1

1

r r r

r r r

r r r

r r r

r r

r r

f l

f l

f sh l
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f

f








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    

    

   

   

 

 

 

 


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4( 2) 6,4( 2) 1 1

4( 2) 6,4( 2) 2 1

4( 2) 6,4( 2) 3 1

4( 2) 6,4( 2) 4 1

4( 2) 6,4( 2) 5

4( 2) 6,4( 2) 7

cos  

sin  

 

 

r r r

r r r

r ir r

r r r

r r
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f

f
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 
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
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3 1
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3 1

4( 1) 3,4( 1) 4 1

cos  ( 1) sin

sin  ( 1) cos  
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R

R R x R R R
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R R x R R R

R
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R
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  

  

  



    


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
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
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 
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

 

   

and the other coefficients fij are equal to zero. 

REFERENCES 

 
1. Bakht B, Jaeger LG. Bridge Analysis Simplified. 

McGraw-Hill, New York, 1985. 
https://lib.ugent.be/catalog/rug01:000191562 

2. Davalos JF, Qiao P, Shan L. Advanced fiber-

reinforced polymer (FRP) composites 

for use in civil engineering. Advanced civil infra-

structure materials: Science, mechanics 

and applications ed. Wu HC. New York, E-

Publishing Inc, 2006; 118-202. 

 www.woodheadpublishing.com 

3. Timoshenko SP, Woinowsky KS. Theory of Plates 

and Shells, McGraw-Hill Book Company, New York, 

1959. 

4. Leissa AW. Vibration of plates, Acoustical Society of 

America, 1993. 

5. Zhu XQ, Law SS. Moving load identification on 

multi-span continuous bridges with elastic bearings. 

Mechanical Systems and Signal Processing. 2006; 

20:1759–1782. 
https://doi.org/10.1016/j.ymssp.2005.06.004 

6. Lin HP, Chang SC. Free vibration analysis of multi-

span beams with intermediate flexible constraints. 

Journal of Sound and Vibration. 2005; 281:155-169. 
https://doi.org/10.1016/j.jsv.2004.01.010  

7. Li WL, Zhang X, Du J, Liu Z. An exact series solu-

tion for the transverse vibration of rectangular plates 

with general elastic boundary supports. Journal of 

Sound and Vibration. 2009; 321: 254-269 
https://doi.org/10.1016/j.jsv.2008.09.035 

8. Takabatake H, Nagareda Y. A simplified analysis of 

elastic plate with edge beams. Journal of Computer 

and Structures. 1999; 70:129-139. 
https://doi.org/10.1016/S0045-7949(98)00164-3 

9. Vinson JR. The behavior of thin walled structures: 

beams, plates, and shells, Dordrecht Kluwer, 1989.   

10. Cheung YK, Zhou D. Vibrations of rectangular plates 

with elastic intermediate line-supports and edge con-

straints. Journal of Thin-Walled Structures. 2000; 

37:305-331.  
https://doi.org/10.1016/S0263-8231(00)00015-X 

11. Gorman DJ, Garibaldi L. Accurate analytical type 

solutions for free vibration frequencies and mode 

shapes of multi-span bridge decks: the span-by-span 

approach. Journal of Sound and Vibration. 2006; 290: 

321-336. https://doi.org/10.1016/j.jsv.2005.03.020 

12. Rezaiguia A, Laefer DF. Semi-analytical determina-

tion of natural frequencies and mode shapes of multi-

span bridge decks. Journal of Sound and Vibration. 

2009; 328: 291-300. 
https://doi.org/10.1016/j.jsv.2009.08.007. 

13. Rezaiguia A, Fisli Y, Ellagoune S, Laefer DF, Ouelaa 

N. Extension of semi- analytical approach to deter-

mine natural frequencies and mode shapes of a multi-

span orthotropic bridge deck. Structural Engineering 

and Mechanics. 2012; 43: 71-87. 

http://dx.doi.org/10.12989/sem.2012.43.1.071. 

14. Kunde MC, Jangid RS. Effects of Pier and Deck 

Flexibility on the Seismic Response of Isolated 

Bridges. Journal of Bridge Engineering. 2006; 11(1): 

109-121. https://doi.org/10.1061/(asce)1084-

0702(2006)11:1(109) 

15. Service d'études techniques des routes et autoroutes, 

appareils d’appuis en elastomere frette : utilisation 

sur les ponts, viaducs et structures similaires. 

Ministere de l’ecologie du developpement et de 

https://lib.ugent.be/catalog/rug01:000191562
https://doi.org/10.1016/j.ymssp.2005.06.004
https://doi.org/10.1016/j.jsv.2004.01.010
https://doi.org/10.1016/j.jsv.2008.09.035
https://doi.org/10.1016/S0045-7949(98)00164-3
https://doi.org/10.1016/S0263-8231(00)00015-X
https://doi.org/10.1016/j.jsv.2005.03.020
https://doi.org/10.1016/j.jsv.2009.08.007
http://dx.doi.org/10.12989/sem.2012.43.1.071
https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.1061%2F(asce)1084-0702(2006)11%3A1(109)
https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.1061%2F(asce)1084-0702(2006)11%3A1(109)


DIAGNOSTYKA, Vol. 22, No. 1 (2021)  

Farah I, Rezaiguia A, Mouassa A, Debra L, Guenfoud S.: Free vibration analysis of multi-span orthotropic … 

 

21 

l’amenagement durable, republique française. 2007. 

https://www.decitre.fr/livres/appareil-d-appui-en-

elastomere-frette-5552000544343.html  

16. Zhu XQ, Law SS. Dynamic behavior of orthotropic 

rectangular plate under moving loads. Journal of En-

gineering Mechanics. 2003; 129(1): 79-87.  
https://doi.org/10.1061/(ASCE)0733-

9399(2003)129:1(79) 

 
Received 2020-04-30 

Accepted 2021-01-05 

Available online 2021-01-08 

 

Imed FARAH, is a PhD stu-

dent in Applied Mechanics of 

New Materials Laboratory at 

the University of 8 may 1945-

Guelma, Algeria. Areas of 

interest: vibrations and model-

ling. 

 

 

 

 

Abdelouahab REZAIGUIA, 

received his PhD degree in 

Mechanical Engineering in 

2008 from Annaba University. 

He is a Professor in the De-

partment of Mechanical Engi-

neering, University of 8 may 

1945-Guelma, Algeria. He is a 

member of Applied Mechanics 

of New Materials Laboratory. 

Research topics: Dynamic 

behaviour of structures under moving loads, Ro-

tordynamics.  

 

Ahcene MOUASSA, received 

his PhD degree in Mechanical 

Engineering in 2011 from 

University of 8 may 1945-

Guelma. He is a member of 

Mechanic and Structures La-

boratory. He works at the 

Department of Mechanical 

Engineering at the same Uni-

versity. Research topics: Hy-

drodynamic and elasto-

hydrodynamic lubrication of journal bearings, structural 

dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Debra LAEFR, received her 

PhD degree in civil engineering 

in 2001 from the University of 

Illinois Urbana-Champaign. She 

is a Full Professor in the De-

partment of Civil and Urban 

Engineering at New York Uni-

versity and leads the Urban 

Modeling Group at the Center 

for Urban Science and Progress.   

 

Salah GUENFOUD, received 

his PhD degree in Structural 

Mechanics in 2001 from the 

Belarusian National Technical 

University. He is a Professor in 

the Department of Mechanical 

Engineering in 8 may 1945 

University-Guelma, Algeria. He 

is a member of Applied Me-

chanics of New Materials La-

boratory. Research topics: 

modelling of the structures with 

any boundary conditions in static and dynamic, modelling 

of structures of composite materials, inverse problems. 
 

https://www.decitre.fr/livres/appareil-d-appui-en-elastomere-frette-5552000544343.html
https://www.decitre.fr/livres/appareil-d-appui-en-elastomere-frette-5552000544343.html
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(79)
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(79)

