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Abstract 

The article presents a model of operational fuel consumption by a passenger car from the B segment, 

powered by a spark ignition engine. The model was developed using artificial neural networks simulated in 

the Stuttgart Neural Network Simulator (SNNS) package. The data for the model was obtained from long-

term operational tests, during which data from the engine control unit were recorded via the OBDII diagnostic 

interface. The model is based on neural networks with two hidden layers, the size of which was selected using 

an original iterative algorithm. During the structure selection process, a total of 576 different networks were 

tested. The analysis of the obtained test errors made it possible to select the optimal structure of the 6-19-17-1 

model. The network input values were: vehicle speed and acceleration, road slope, throttle opening degree, 

selected gear number and engine speed. The networks were trained using the efficient RPROP method. A 

correctly trained network, based on the set parameters, was able to forecast the instantaneous fuel 

consumption. These forecasts showed a high correlation with the measured values. Average fuel consumption 

calculated on their basis was close to the real value, which was calculated on the basis of two consecutive 

fuelings of the vehicle. 
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MODELOWANIE ZUŻYCIA PALIWA PRZY POMOCY SZTUCZNYCH SIECI NEURONOWYCH 
 

Streszczenie 

W artykule przedstawiono model eksploatacyjnego zużycia paliwa przez samochód osobowy z segmentu 

B, zasilany silnikiem o zapłonie iskrowym. Model opracowano przy wykorzystaniu sztucznych sieci 

neuronowych, których działanie symulowano w pakiecie Stuttgart Neural Network Simulator (SNNS). Dane 

do modelu pozyskano z długotrwałych badań eksploatacyjnych, podczas których rejestrowano przez interfejs 

diagnostyczny OBDII dane pochodzące z jednostki sterującej silnikiem. Model oparto na sieciach 

neuronowych o dwu warstwach ukrytych, których wielkość dobrano przy pomocy autorskiego, iteracyjnego 

algorytmu. Podczas procesu doboru struktury przebadano łącznie 576 różnych sieci. Analiza uzyskanych 

błędów testowania pozwoliła na wybór optymalnej struktury modelu 6-19-17-1. Wielkościami wejściowymi 

sieci były: prędkość i przyspieszenie pojazdu, nachylenie drogi, stopień otwarcia przepustnicy, numer 

wybranego biegu oraz prędkość obrotowa silnika. Sieci uczono przy użyciu wydajnej metody RPROP. 

Poprawnie nauczona sieć na podstawie zadanych parametrów była w stanie prognozować chwilowe zużycie 

paliwa. Prognozy te wykazywały wysoką korelację ze zmierzonymi wartościami. Obliczone na ich podstawie 

średnie zużycie paliwa było zbliżone do rzeczywistej wartości, którą obliczono na podstawie dwu kolejnych 

tankowań pojazdu. 

 

Słowa kluczowe: zużycie paliwa, modelowanie, sztuczne sieci neuronowe, SNNS, dane OBDII 

 

1. INTRODUCTION 

 

Transport is 94% dependent on oil [3]. Fuel 

consumption is directly related to CO2 emissions. 

As stated in [6] road transport generates up to 92% 

CO2 emissions from the transport sector. In the 

European Union, it is responsible for approx. 20% 

of the total emissions of this gas [20, 11]. Passenger 

cars have the largest share in this emission. They 

generate 15% of CO2 in the EU [20]. 

The fuel consumption of a given car depends on 

[21, 4, 18]: cruise speed, driver acceleration 

aggressiveness, road slope, tire pressure. As stated 

in [21], fuel consumption per 100 km is optimal at 

the speed of 50-70 km/h. It increases rapidly with 

increasing acceleration [21]. 

Driving technique has a significant influence on 

a car's fuel consumption. For example, the use of a 

driving strategy with seed variations consisting in 

alternate acceleration and deceleration while 

driving in a neutral gear ratio (deceleration) 

performed with gear in neutral position allows for 

fuel consumption reduction from a few % to 30% 

compared to driving at a constant speed [4]. 

The second important group of factors 

determining the fuel consumption of a car are its 

design features, such as [4]: weight, body shape 

determining the aerodynamic drag, design and 
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swept volume of the engine, design of the driveline, 

e.g. its electrification of the powertrain in hybrid 

cars. It allows, for example, to recover energy 

during braking events. However, plug-in hybrid 

cars and fully electric cars face significant market 

barriers including high prices, short drive ranges, 

long charging times and an insufficient recharging 

infrastructure [24]. The advantage of electric cars is 

about 3.4 times lower energy consumption 

compared to conventional ones [8]. 

As already mentioned, the design of the engine 

has an impact on fuel consumption. For example, 

diesel motor vehicles consume approximately 12% 

less fuel than gasoline-fueled vehicles [6]. The use 

of safety assistance driving systems in a car also 

affects fuel consumption [28]. There are also other 

technical solutions aimed at lowering fuel 

consumption, such as the use of photovoltaic panels 

on the car roof proposed by the authors of the work 

[11]. The introduction of technical improvements 

resulting in more fuel efficient cars does not always 

contribute to the overall reduction of fuel. As 

reported in [23], it favors the increase in popularity 

of larger, heavier and more powerful cars. This is 

because car buyers consider their size and power 

[15] the most important. Hence, heavier and more 

powerful cars [23] are becoming more and more 

popular in many regions of the world. Fuel 

economy is less important for new car buyers [15, 

25]. Used car buyers pay more attention to fuel 

economy [26]. 

Other factors also affect fuel consumption. In 

[10], fuel consumption was reduced by 13% on hot 

days thanks to the use of an aluminum coating 

reflecting sunlight on a passenger car body. This 

made it possible to limit the power needed to 

operate the air conditioning system. An example of 

another factor that affects fuel consumption is the 

altitude of the road on which the car is traveling. 

For example, thanks to the lower air density, the 

dynamic resistance is reduced, which usually leads 

to a slight decrease in fuel consumption (2.5-3.5% 

for the altitude of 2200 m above sea level) 

compared to driving on the road located at a low 

altitude above sea level [28].  

 

2. MODELING OF FUEL CONSUMPTION 

 

Usually fuel consumption is expressed in liters 

per hundred kilometers (l/100 km) or miles per 

gallon (mpg) [3]. Finding the dependence of fuel 

consumption on various factors allows us to 

forecast fuel consumption prediction and work out 

a method of its reduction [21, 19]. 

Fuel consumption models can be classified as 

follows [13]: 

- engine map based models, in which fuel 

consumption is calculated on the basis of an 

engine map, which is a matrix. They are 

accurate but require a large amount of data for 

each car;  

- regression based models using statistical models 

developed on the basis of regression of the 

results of real experiments. The physical 

interpretation of results of such calculations is 

limited. It is also important not to take into 

account too many explanatory variables in the 

regression; 

- load based models, use physical equations to 

describe the phenomena that trigger fuel 

consumption. Such models are complex and 

require high computational effort; 

- hybrid models combining two of the above-

mentioned kinds. They combine the advantages 

of different models to reduce computation time, 

increase accuracy and facilitate calibration. In 

diesel engines fuel consumption can be 

calculated using the method based on 

processing the pressure data from inside the 

cylinder [7]. 

Fuel consumption models can be implemented 

into microscopic traffic simulation software, which 

allows the evaluation of the environmental impact 

of transportation management strategies [22]. 

In work [26], fuel consumption was modeled 

using an artificial neural network. It makes it 

possible to predict the average consumption in 

urban and extra-urban driving for new cars. Its 

input sizes are: make of car, engine style, weight of 

car, vehicle type and transmission system type. 

However, it does not allow for the determination of 

the instantaneous fuel consumption, e.g. depending 

on traffic conditions.  

 

3. FUEL CONSUMPTION TESTS 

 

The operational research on fuel consumption 

was started in November 2014 and lasted nearly 

five years for the car described in this article. They 

were completed with the sale of the vehicle in 

October 2019. Researches were performed during 

the normal, everyday use of a passenger car, related 

to the satisfaction of individual transport needs, 

such as commuting to work and other trips in 

Poland. The tests consisted of continuous data 

recording from the engine control unit. 

A sedan passenger car from the B segment was 

used as the research object. It was a Renault Thalia 

I vehicle, produced in 2003, powered by a K7J 700 

spark-ignition engine with a displacement of 1,390 

cm3. It was characterized by a rated power of 55kW 

(75HP). This unit has the opinion of a quite reliable 

construction, probably thanks to the simple 

structure. The cylinder head of this four-cylinder 

engine has only 8 valves (4 inlet and 4 exhaust). It 

is a multi-point indirect injection power unit, which 

can be equipped with a sequential 4th generation 

LPG system at reasonable costs. In July 2015, a 

STAG LPG installation based on the QBOX Basic 

controller, AC W02 injectors and R02 reducer was 

installed in the tested car. The gas system was 

correctly tuned, which was confirmed by tests on a 

chassis dynamometer. In the tested car, the 
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necessary consumables such as oils, filters and 

ongoing repairs were carried out in order to keep 

the research facility in a good technical condition. 

 

3.1. Equipment and methodology of research 

The standard OBDII (On-Board Diagnostic 

level 2) diagnostic connector was used to obtain 

data. Using the inexpensive and widely available 

ELM327 adapter mounted directly in the OBDII 

socket, it was possible to read data from the 

vehicle's engine control unit (ECU). The socket was 

under the ashtray, so for easy access, a second 

ashtray was purchased, the bottom of which was cut 

out and the lid spring was removed. Such a 

modified ashtray was installed in place of the 

original part. Before each trip, the ELM327 adapter 

was connected to the OBDII socket, and the 

springless ashtray cover fell by gravity, while not 

overloading the socket by pressing on the back wall 

of the adapter. A standard version of the ELM327 

was purchased, equipped with a wireless Bluetooth 

communication interface. For some time, the 

miniaturized version of the ELM327 adapter was 

also used, although, as practice has shown, this 

model has a lower durability and usually fails after 

about a year of use. The ELM327 adapter sent data 

read from the engine ECU to the Samsung Galaxy 

S4 Mini (GT9195) smartphone via the Bluetooth 

interface. It is a device based on the Android 4.4.2 

operating system, which was purchased in the fall 

of 2014. Due to its small size and the possibility of 

replacing the battery, this smartphone was very well 

suited as a mobile data logger. Torque version 

1.8.158 was responsible for transmission and 

storage of data obtained from the engine control 

unit. After initial trials, a paid Pro version for 

Android was selected from the Google Play Store. 

The Pro version offers much wider possibilities, 

especially in terms of creating query diagrams sent 

to the car's ECU, automatic creation of subsequent 

trip logs, and saving the results. The TorquePro 

application also downloaded data from the integral 

modules of the Samsung Galaxy S4 mini, i.e. the 

GPS system and the acceleration sensor, during 

operation. During the tests, the smartphone saved 

the measurement data on a microSD card installed 

to text files in *.csv format with a frequency of 2 

Sa/s. 

Long-term use of Bluetooth and GPS wireless 

transmission causes a noticeable increase in power 

consumption by the smartphone, therefore, to 

protect it from discharging the battery, it was 

connected to the Mean Well SD25A5 DC/DC 

impulse converter powered by a 12V car 

installation. The diagram of the test apparatus is 

shown in Figure 1. 

The measurement data files saved on the 

smartphone's microSD card were quarterly copied 

to a PC and saved to external media in order to 

prevent their loss. Additionally, information related 

to the refueling of the vehicle was collected. The 

amount of refueled fuel, its price, refueling date and 

information about the location of the fuel station 

were entered into the measurement table. 

 
Fig. 1. Scheme of test apparatus 

 

3.2. Equipment and methodology of research 

Over the course of nearly 5 years, the tested 

Renault Thalia car traveled a distance of over 90.5 

thousand km, which made it possible to obtain over 

4.6 GB of measurement data related to its 

operation. After the preliminary testing stage, the 

Torque application chose to create a trip log each 

time Torque was connected to the car's ECU, and 

therefore the dataset includes approximately 4600 

*.csv files. 

The structure of the main trip log file stored in 

the Torque application database consisted of 22 

columns of comma separated data, referred to in the 

application as PID. The engine controller of the 

tested vehicle provided information on 10 

parameters of the engine and car operation, while 

the remaining 12 were collected from sensors and 

modules of the GT9195 smartphone. The data fields 

and their sources are presented in Table 1. 

 
Table 1. Data fields in *.csv files 

Torque PID Data source 

GPS Time GPS 

 Device Time Smartphone 

 Longitude GPS 

 Latitude GPS 

GPS Speed, m/s GPS 

 Horizontal Dilution of Precision GPS 

 Altitude GPS 

 Bearing GPS 

 G(x) Smartphone 

 G(y) Smartphone 

 G(z) Smartphone 

 G(calibrated) Smartphone 

 GPS Speed, km/h GPS 

Throttle Position (Manifold), % ECU 

Engine RPM, rpm ECU 

Trip Distance, km ECU 

OBD Speed, km/h ECU 

Engine Coolant Temperature, °C ECU 

Trip average KPL, km/l ECU 

Trip average Litres/100 KM, l/100km ECU 

Kilometers Per Litre (Instant), km/l ECU 

Timing Advance, ° ECU 

Intake Manifold Pressure, psi ECU 

 

The data in some columns were recorded for the 

needs of other studies, while in this paper 11 types 
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of measured quantities were selected for further 

elaboration. In table 1 they are marked in green. 

The creation of the operational fuel 

consumption model was preceded by an analysis of 

the factors influencing the vehicle's energy 

consumption. According to the theory of motor 

vehicle traffic, there are several types of resistance 

to motion, which the car uses energy to overcome. 

For internal combustion cars, it is the chemical 

energy contained in the fuel. Thermal machines in 

the form of combustion engines are used to convert 

it into mechanical energy useful for propulsion 

purposes. However, due to their limited efficiency, 

a significant part of it is emitted to the environment 

in the form of thermal energy. 

Mechanical energy is spent on overcoming the 

following resistances: internal friction, rolling, hill, 

aerodynamic and to acceleration. The user of the 

vehicle has little influence on some of them, as they 

depend on the car's structure. In other cases, 

however, changing one driving style can bring 

noticeable savings. 

In order to successfully create a model of 

operational fuel consumption with the help of 

artificial neural networks, it was necessary to 

develop raw measurement data and process them 

into at least two separate data sets - training string 

and test string. It was decided that the model will 

take into account information about the speed of the 

vehicle, its acceleration and road gradient. The data 

on the selected gear, the degree of throttle opening 

and the engine speed will also be entered. 

Additional assumptions were made that the data 

recorded during engine warm-up and when the 

vehicle was stationary were not taken into account. 

In order to take into account the influence of the 

road slope on fuel consumption in the constructed 

model, it was necessary to calculate the slope on the 

basis of the height above sea level transmitted by 

the GPS module. The GT9195 smartphone takes 

these measurements with an accuracy of one meter. 

The data has some random noise that could affect 

the calculated road slope gradient. Therefore, the 

calculations were carried out each time for the 

distance traveled in at least 20 seconds. Taking into 

account the large number of files with measurement 

data, in order to efficiently carry out the 

calculations, the use of spreadsheets was abandoned 

and own software was written operating in batch 

mode. The program was written and compiled using 

Free Pascal ver. 3.2.0. The software prepared in 

such a way (dH.exe) made it possible to make 

calculations for all collected files with minimal user 

intervention, which was limited to generating a list 

of files. Due to the different sampling frequencies 

of the GPS module and the OBD connector in the 

data files, it was possible to notice the aliasing 

phenomenon, therefore when creating the dH 

program, a procedure acting as an anti-aliasing 

filter was introduced into it. It was based on 

cyclical calculations of the slope of the regression 

line for a limited fragment of the set of designated 

measurement points. In the source file, the dH 

program searched for successive pairs of values of 

the trip distance traveled by the vehicle and the 

altitude above sea level, for which there was a 

change in the second of the described parameters. 

Then, according to the formula (1), for the central 

point of the interval with a given number of 

samples, the least squares method was used to 

calculate the slope of linear regression. 
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where: 

k – index of the central point of the range, 

p – half the length of the interval, 

li, – trip distance,  

l – average trip distance value in the range, 

hi – altitude, 

h – average value of altitude in the interval. 

In the next iteration, the calculation interval was 

shifted by one point and the calculations were 

repeated (Fig. 2). 

 
Fig. 2. Method of determining the slope of the 

road 

 

The total length of the calculation interval pC 

was given by the formula 2: 

12 += ppC
                           (2) 

Based on the analysis of data from the GPS 

system, the value of the algorithm parameter p = 20 

was determined experimentally. It allowed to 

reduce the influence of interferences and eliminate 

measurement noise. The result of the dH program 

was a text file (*._dH). 

Another factor influencing the fuel consumption 

of a car is the dynamics of changes in the speed of 

its movement, i.e. acceleration. Although the 

Torque application records data from the 

acceleration sensor, which is one of the smartphone 

modules, these are instantaneous values 

additionally burdened with considerable noise. The 

acceleration sensor readings are additionally 

influenced by the tilt of the car's body and the 

centrifugal force that occurs when cornering the 

road. Due to the mobile nature of the measuring 

device, it was decided not to calibrate the position 

of the smartphone in relation to the vehicle each 

time. The acceleration of the vehicle was calculated 
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from the changes in the speed of the car. The test 

results contain two information about the speed of 

the vehicle's movement: from the ECU and from 

the GPS system. 

The first was used to calculate the acceleration, 

and the second was used to verify and detect 

possible errors in the data set. For this purpose, the 

dV.exe program was written, which was based on 

the above-described algorithm, but the independent 

variable was time, and the dependent variable was 

speed. Due to the lack of a clear aliasing 

phenomenon and lower measurement noise, it was 

possible to use a shorter calculation interval (p = 

10). As a result, the results provided by the dV 

program better reflected the dynamics of changes in 

the speed of the tested car. The results of the 

program's work were also saved to text files 

(*._dV). However, to facilitate the subsequent data 

synchronization, they were supplemented with a 

column of data related to the distance travelled by 

the car. 

Another information not appearing directly in 

the measurement results was the number of gear 

selected by the driver in the drive system. This was 

calculated on the basis of data from the ECU of the 

tested vehicle as a ratio of the engine RPM and the 

vehicle speed (vOBD). It should be noted that due 

to the clutch slippage and measurement 

inaccuracies, a certain gear selected corresponds to 

some range of RPM/vOBD ratio, which can be seen 

in the form of scattering of points in bold fields 

along the line of the most common values of that 

ratio. Due to the large number of results and more 

frequent slippage of the clutch when shifting gears 

in the speed range lower than 2800 rpm and speeds 

lower than 60 km/h, the data range above the ellipse 

expressed by formula 3 was selected to determine 

the limits of the gear ranges. 

1
2

2

2

2

1

2

=+
e

v

e

n ii    (3) 

where: 

n – engine speed, 

v – car speed, 

e1 – ellipse width factor, 

e2 – ellipse height factor. 

The following values of the ellipse coefficients 

were adopted in the calculations: e1 = 2800 and 

e2 = 60. For the analyzed range, data on engine 

RPM to vehicle speed ratios in the range 15… 300 

were taken, because the values below 15 indicate 

the drive disengagement or the gear lever position 

in neutral. A RPM/vOBD ratio above 300 appears 

only with high clutch slippage when starting the 

car. Based on the selected range of data, which was 

marked in red in Figure 3a, a gear histogram was 

prepared (Figure 3b). 

Based on the analysis of the histogram, the 

limits of the RPM/vOBD ratios corresponding to 

the individual gears were estimated (1 ... 5). 

Specific statistics such as an average and standard 

deviation values  have also been taken into account 

(Table 2). Due to larger noise of RPM/vOBD ratio 

values in the 1st and 2nd gear ranges the ±2 

estimation rule was used.  

 
Fig. 3. Empirical estimation of the engaged 

gear in the drive system 

 
Table 2. Statistics taken into account during the 

estimation of the engaged gear in the drive system 

 Gear 

 1st 2nd 3rd 4th 5th 

Number of 

results 
4662 20316 46225 80441 331293 

Limit 

calculation 
±2 ±2 ±3 ±3 ±3 

Median 159,3 85,3 54,8 40,0 32,8 

Average 159,0 85,4 55,1 40,1 32,7 

Standard 

deviation  
17,56 4,83 2,60 0,83 1,23 

Lower limit 123,9 75,8 47,3 37,6 28,9 

Upper limit 194,1 95,1 62,9 42,6 36,5 

 Engine RPM to vehicle speed ratio 

 

As before, due to the very large number of 

processed files, it was decided to develop a 

proprietary solution that works in batch mode. 

Another program has been created for this purpose - 

Trq_sel.exe. Its most important function, however, 

was to create a database from the collected research 

data and the results of the dH and dV programs, 

which would later be used as a basis for creating a 

fuel consumption model. The algorithm of 

operation of the Trq_sel program is shown in 

Figure 4. After loading the configuration data, the 

Trq_sel program opened three files for each trip - 

Torque trip log (*.csv) and previously created files 

with data on road gradient (*._dH) and vehicle 

acceleration (*._dV). Then, for each successive line 

of the trip log file, it calculated the gear value in the 

drive system and checked the conditions for 

rejecting a given record from the result set. 

Rejection took place if any of the following 

conditions were met: 

- stopping the vehicle (v = 0), 

- engine idling (n < 850 RPM), 

- engine warming up (T < 70 OC), 

- gear ratio outside the gear range 1…5.  
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In this case, the next one was loaded in place of 

the current line and the conditions checking process 

was repeated from the beginning. If, however, the 

line was not rejected, the data contained therein 

were supplemented with the corresponding values 

of vehicle acceleration, road inclination and the 

gear ratio selected in the drive system, and then 

added to a common database file. 

 
Fig. 4. Algorithm of operation of the program 

creating the research database 

 

4. NEURAL FUEL CONSUMPTION MODEL 

 

Due to the large size of the research database, as 

well as their interrelationships, artificial neural 

networks were used to create the operational model 

of fuel consumption. For this purpose, the Stuttgart 

Neural Network Simulator (SNNS) software 

package was used. It is available free of charge 

under the LGPL Version 2 license. In addition to 

the typical work with the graphical user interface, 

the developers have also made available the 

functionality of working in batch mode, which 

allows SNNS to integrate with their own user 

software [2, 12]. 

 

4.1. Data for teaching and testing artificial 

neural networks 

Due to the large number of available database 

records, it was decided to train and test the network 

using randomly selected subsets. 41,460 records 

were selected from the database and the training set 

was created from them. The test set was created 

from 2,584 data records. Both were characterized 

by the structure presented in Table 3. 

 
Table 3. Structure of training and validating sets 

Value description Type Database value 

range 

Vehicle speed v 

Input 

2...154 km/h 

Gear 1...5 

Throttle opening, Th 18,8...90,2 % 

Engine rotation speed n 850...6239 RPM 

Acceleration a -1,78...1,73 m/s2 

Road slope dh -12,1...11,2 % 

Instantaneous fuel 

consumption 
Output 0,6...97,2 /100km 

 

The values of each of the input parameters were 

normalized to the range 0...1[1, 14] according to the 

formula 4: 

iMINiMAX

iMINi
i

pp

pp
np

−

−
=

)k(
)k(                    (4) 

where:  

npi(k) – normalized value of the input signal and the 

network for the kth pattern, 

pi(k)  –  input and network signal value for the kth pattern, 

MINpi(k) – the smallest input and network signal value 

for the entire database, 

MAXpi(k) – the  highest value of the input and network 

signal for the entire database 

In the same way, the output data used to train 

the network was normalized. Normalized data was 

recorded with an accuracy of three decimal places 

and saved to text files. According to the 

requirements of the SNNS program, these files 

were supplemented with headers and saved with the 

*.pat extension. In this form, they were ready for 

use. 

 

4.2. Selection of learning parameters and 

network structure 

Most of the common types of artificial neural 

networks are built of mathematical equivalents of 

neurons [5] arranged in successive layers. User 

signals are fed to the inputs of the neurons of the 

first layer, called the input layer. After processing, 

the signals from the outputs of these neurons are 

fed to the inputs of the units of the next group of 

neurons - the so-called hidden layer. Depending on 

the choice of structure, the network may have one 

or more hidden layers interconnected in succession. 

The last layer is made up of neurons whose output 

signals are available to the user and is called the 

output layer. In the process of training the network, 

signals from the training sequence file are fed to the 

network inputs, and the expected input signal is fed 

to the outputs. The learning supervisor makes small 

changes in the level of amplification of connections 

between neurons each time, so as to obtain a 

network response close to the assumed one. This 

process is repeated many times, and at the same 

time the level of errors generated by the network is 

monitored. Network training is continued over 

many cycles until the expected result is achieved or 

the training process fails. The network training 

process is also verified through a second data set - a 

test set whose data is slightly different from that 

used to train the network. Thanks to this, it is 

possible to assess the ability to generalize the 

acquired knowledge [9] through the artificial neural 

network. 

The size and structure of the network affects its 

operation and the ability to model complex 

phenomena. Networks with a too narrow structure 

are not able to work out the expected solution and 

generate significant errors already at the training 

stage. Networks with an overly complex structure 

are effective in training, but they have impaired 

ability to generalize the acquired knowledge. This 
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phenomenon is called "memorization" and can be 

detected when an increase in errors is observed for 

the test string. Therefore, the choice of a network 

structure is an original activity and many scenarios 

have arisen for it. 

In this work, a proprietary solution was used, 

the software implementation of which was possible 

due to the fact that the authors of the SNNS 

package had direct access to the core of the network 

simulator. By omitting the graphical user interface, 

you can automatically input and output data, and 

supervise learning from your own software. Such a 

solution relieves the user from the necessity of 

constant interaction with the program and gives the 

possibility of constructing own, extensive scenarios 

of automatic supervision of the training process. 

Additionally, SNNS offers its own programming 

language (Batchman) which is very useful in 

conjunction with user-generated scripts. 

In this work, the concept of automated creation 

and training of subsequent networks with an 

increasingly complex structure was used. For this 

purpose, the previously developed program 

mkNHH1net was used, which in combination with 

user scripts and the SNNS package was an efficient 

tool supporting the creation and teaching of a large 

number of artificial neural networks. A 

considerable advantage of the solution used was the 

possibility of shortening the computing time by 

deliberately dividing it between various processor 

threads. 

 
Fig. 5. The scheme of operation of the 

mkNHH1net program 

 

Before the creation process was started, data on 

network training was introduced into the base 

script. The SNNS package offers several dozen 

types of training functions, among which the 

Riedmiller and Braun's RPROP [16] (Resilient 

backPROPagation) heuristic algorithm was 

selected. This choice was dictated by the high speed 

of its work compared to other gradient algorithms. 

As a result of its operation, the learning coefficient 

η changes from the minimum value ηMIN = 10-5 to 

the maximum value ηMAX = 50. Its initial value 

(η0 = 0,1) and the change limits were adopted in 

accordance with the SNNS documentation. During 

learning, the weights of connections between 

neurons were modified in each cycle according to 

formula 5.   
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where: 

ij
k - learning factor for weights of the links of neurons i 

and j in kth step,  

sgn - sign of argument, 

Wij(k) - weight of the link of neurons i and j, 

E[W(k)] – target function,  dependent on W(k) weight 

vector. 

Network training was supervised by monitoring 

the value of Mean Square Error (MSE) [26, 17], 

expressed as the relationship 6. 
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where: 

yi(k) – calculated value of the output signal and the 

network for the kth test pattern, 

di(k) – required value of the output signal and the 

network for the kth testing pat tern, 

n  – number of observations (data set size), 

q – number of estimated parameters (network weights), 

Three conditions for completing network 

training are programmed in the base script. In the 

case when the MSE test error fell below the 

assumed value, it was assumed that the network 

was trained correctly. However, if the network, 

despite successive cycles, showed higher than 

expected errors, the training process could be 

completed in two ways. For networks achieving 

some progress, it ended with the lapse of the 

assumed maximum number of training cycles. An 

additional mechanism interrupting training has been 

provided for the networks that did not show any 

progress in training for a greater number of cycles. 

This prevented wasting time, CPU processing 

power and electricity. 

The mkNHH1net program used the base script, 

which required assumptions regarding the 

maximum number of training cycles, the names of 

the training and testing sequence files, and the size 

limits of the created networks. 

The result of its work was two main scripts. The 

first of them created new, still empty networks, and 

the second (LRNets) conducted and supervised the 

training process for each of them, using previously 

prepared sets of training and testing sequences. This 

script also saved the results of work in the form of 

text files. Files containing the trained networks 

(*.net) were saved and information about the course 
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of the training process was logged (*.log) for 

further analysis. In the variant of the base script 

used, it was possible to save partially trained 

networks every given number of cycles. At the end, 

each network was subjected to an additional test 

from which a full report for the states of inputs and 

outputs was saved (*.res). To facilitate the 

interpretation of the results with the help of the 

Gnuplot program, graphs of training errors were 

created automatically. 

In order to select the optimal structure for 

operational modeling of fuel consumption, a total of 

576 networks were created and analyzed with the 

structure: 

- input layer of 6 neurons, 

- first hidden layer from 1 to 24 neurons, 

- second hidden layer from 1 to 24 neurons, 

- output layer 1 neuron. 

The time needed to perform training 

calculations and testing for such a set of nets was 

almost 35 hours. Figure 6 shows the dependence of 

the training time of the created networks on the size 

of its hidden layers. 

In this figure, it can be seen that training 

networks with a complex internal structure takes 

much longer than networks with a small number of 

neurons. Larger networks contain a significant 

number of connections between neurons, and 

appropriate calculations must be made for each of 

them during training. The largest of the established 

networks had over 700 connections, while the 

smallest had only 8. 

 
Fig. 6. Training time for networks with 

different sizes of hidden layers 

 

The number of training cycles is a measure of 

the network training time independent of the 

number of connections. During one training cycle, 

all connections between neurons are modified. For 

the studied networks, the maximum number of 

training cycles was assumed to be 2000. Figure 7 

presents the obtained results of the dependence of 

the number of training cycles depending on the size 

of the hidden layers of the created networks. Due to 

the extensive conditions for stopping the training 

process programmed in the base script, a large 

variety of results can be noticed in this chart. 

 
Fig. 7. Number of training cycles for 

networks with different sizes of hidden layers 

 

However, this is not a serious problem, because 

the structure of the network is selected mainly due 

to the level of errors they generate. The most 

important criterion is the value of the test mean 

squared error determined by the relationship 6. Its 

values for the created networks are shown in Figure 

8.  

Fig. 8. Testing MSE errors for networks with 

different sizes of hidden layers 

 

By introducing the results on the plane, several 

network areas with the desired properties can be 

seen. However, the optimal choice for the examined 

structures was to select a network with the first 

hidden layer composed of 19 neurons, and the 

second - of 17 neurons. Although the graph of the 

dependence of the average training error can be 

seen on more complex networks with smaller 

training errors (Fig. 9), however, these errors show 

lower possibilities of generalizing knowledge. This 

can be deduced from the higher test error values. 

Ultimately, a network with the following structure 

was selected: 

- input layer of 6 neurons, 

- first hidden layer  from 19 neurons, 

- second layer hidden from 17 neurons, 

- output layer 1 neuron. 
It took 1,700 cycles to train and ended with a testing 

error of  4,82*10-4. 
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Fig. 9. Training MSE errors for networks with 

different sizes of hidden layers 

 

5. ANALYSIS OF THE RESULTS AND 

VERIFICATION OF THE MODEL 

 

In order to verify the operation of the neural 

model of fuel consumption by the tested car, data 

from a part of the journey on the A4 motorway was 

selected. These data did not occur in the training or 

testing sequence. The road section between MOP 

Rudka (Tarnów) and MOP III Kłaj (Bochnia) was 

selected. The selected route, approximately 41 km 

long, is shown in Figure 10. 

The research data recorded during the drive 

along the selected route and the calculations of 

vehicle acceleration and road slope made on their 

basis are shown in Figure 11. The average vehicle 

speed was 98 km/h, and the maximum speed 

recorded was 123 km/h. For the most part, 5th gear 

was engaged, but it was also downshifted to 4th or 

even 3rd gear. The engine of the car was usually 

running at around 3200 RPM, but the maximum 

speed recorded was almost 6000 RPM. As the test 

car was not equipped with cruise control, the driver 

frequently changed the throttle position in the range 

of 18 - 82%. The achieved accelerations rarely 

exceeded the value of 0.5 m*s-2, and the road slope 

ranged between -1.2% ... 1.6%. 

 
Fig. 10. The course of the route MOP Rudka – MOP III 

Kłaj 

 

Based on the selected data, an additional test 

string containing 2584 data records (wer.pat) was 

created and used to test the trained network. The 

result report has been saved to a file (wer.res). On 

its basis, a spreadsheet was prepared that converted 

the normalized values into their appropriate units. 

Figure 12 shows the curves of the instantaneous 

fuel consumption values taken from the vehicle's 

ECU, as well as the corresponding forecasts of the 

model based on the artificial neural network. 

 
Fig. 11. Data recorded during the drive along the 

selected route 

 

The data presented in Figure 12 show a high 

mutual correlation, the coefficient of which is 

R = 0.896, which shows mostly the correct 

operation of the trained network. 

 
Fig. 12. Comparison of the recorded and calculated 

instantaneous fuel consumption 

 

Then, the average fuel consumption on the 

selected route was calculated and compared with 

the real average value calculated on the basis of 

vehicle refueling. Fuel was refilled at the Lotos 

station located at the starting point of the route - 

MOP Rudka, and then after leaving the A1 

motorway and driving 213 kilometers. 25.61 l of 

LPG was refueled, which corresponds to the fuel 

consumption level of 12.02 l/100 km. Based on the 

history of vehicle operation, the conversion factor 

between the operation of the vehicle on gasoline 

(E5-95) and LPG was determined to be 1.22. 

The corresponding gasoline consumption on this 

route would therefore be 9.85 l/100 km. Which is a 

real value due to the transport of two bicycles on a 

roof rack. The fuel consumption values are 

compared in Table 4. The values included in it are 

similar, and the differences do not exceed 3%. 

During the detailed analysis of the errors 

generated by the neural network, some areas with 

higher MSE values were noticed. 
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Table 4. Comparison of fuel consumption on a selected 

route 

Data source l /100 km Difference 

Refueling the vehicle (at 

section 204 km) 

12,02 (LPG) 

eq. 9,85 (E5-95)  

- 

Data from the Torque app 9,97 (E5-95) +1,22 % 

Forecast from SNNS 10,14 (E5-95) +2,96 % 

 

Analysis of the recorded OBD data revealed that 

it was due to a failure of the car speed sensor 

installed in the gearbox. In this situation, there was 

a significant difference in the value of the speed 

measured by the vehicle's ECU and the GPS 

system. The time of occurrence of such errors was 

correlated with the car's service history and for the 

OBD data recorded after the sensor replacement in 

2018, the network again generated smaller MSE 

errors. Therefore, the developed neural model of 

fuel consumption may also be useful in diagnosing 

the general technical condition of the tested vehicle. 

 

6. CONCLUSIONS 

 

The work uses artificial neural networks to 

develop an operational model of fuel consumption. 

This model was verified by comparing it with the 

actual fuel consumption calculated for two 

consecutive refueling of the vehicle and with the 

recorded test equipment values. Thus, the fuel 

consumption forecast values obtained from the 

neural model corresponded with a fairly large 

approximation to both the real values and those 

read from the engine control unit. 

In order to obtain the most accurate model, the 

network structure was selected using a proprietary 

iterative algorithm. Its use made it possible to test a 

number of networks with different structures and to 

select the optimal variant. Continuous, automatic 

supervision over the network training process 

ensured obtaining a correctly trained network with 

the structure 6-19-17-1. This network showed 

almost 90% correlation with the instantaneous 

values measured for the route not occurring in the 

training process. The calculated average fuel 

consumption differed from the actual value by less 

than 3%. 

The neural model of operational fuel 

consumption developed for a given vehicle can be 

used to check various driving style scenarios and 

provide a hint for the driver on how to reduce fuel 

consumption. 
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