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Abstract 

Despite technological advances and progress in industrial systems, the fault diagnosis of a system remains 

a very important task. In fact an effective diagnosis contributes not only to improved reliability but also to a 

decrease in maintenance costs. This paper presents an approach to a diagnosis of hybrid systems thanks to the 

use of Bond Graphs, Observer and Timed Automata. Dynamic models (in normal and failing mode) are 

generated by an observer based methods as well as through state equations generated by the Bond Graphs 

model. The procedure of fault localization through a method based on the observer does not allow locating 

faults with the same signature of failure. Thus the diagnosis technique for the localization of these defects will 

be based on the time analysis using Timed Automata. The proposed approach is then validated by simulation 

tests in a two tanks hydraulic system. 
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1. INTRODUCTION 

 

Improvement in the dependability of systems 

rests essentially on algorithms of detection and 

isolation of defects. These algorithms mainly 

consist in comparing the actual behavior of a 

system with a behavior of reference systems 

describing normal functioning (in order to detect 

defects) or describing different kinds of defects (In 

order to analyze and isolate faults),  while reducing 

false alarms, non-detections as well as delays in 

detection of defects. In surveillance approaches 

based on quantitative models performances of 

detection procedures and localization of failures 

strongly depend on the used model. 

Once the last is generated, failure indicators can 

be deducted. Obtaining such model is a complex 

and difficult task more particularly for the process 

engineering systems because of their diversity and 

coupling energies which characterize them. 

Classical techniques for detection, localization 

and diagnosis show their limits, especially for 

systems which become increasingly complex, 

which Hybrid Dynamic Systems (HDS). HDSs [1, 

33] are systems composed of dynamics of a 

continuous and discrete nature interacting between 

them; continuous dynamics is represented by 

differential equations and discrete dynamics by 

state transitions. For HDS modeling, there are 

several approaches. The common point between 

these approaches is that continuous evolution is 

affected by discrete events. 

The HDS study focuses on problem classes that 

could not be treated with traditional approaches 

based on homogeneous modelling. Complex 

systems are designed by incorporating differential 

equations to model continuous behavior, and 

discrete event representations to model the 

instantaneous state change in response to events. 

Among the HDS modeling tools, we find: hybrid 

automata [2], Hybrid Petri nets [3, 32], and hybrid 

bond-graph [4]. 

To obtain good performance in terms of 

coverage and high quality of isolation, research is 

directed towards coupling approaches and using 

their complementarity. The coupling of 

continuous/discrete approaches must achieve good 

performance. The modeling approach to which we 

have been interested in our work considers the 

hybrid system model, which is based on the 

interaction of two sub-models, one for event-

aspects, based on timed automata, and the other, 

formalized by state equations (obtained through 

bond graphs) for the continuous aspects. 

The objective of this paper is the modeling of 

hybrid dynamic systems using a mixed approach 

(the approach that combines the continuous systems 

approach and the Discrete Event Systems 

approach), and the application of the generation 

technique Residuals and generation of the timed 

model for the monitoring of these systems. In this 

context, this paper proposes a dynamic model (in 

normal mode and in fault mode) using an observer-

based method, where the equations are obtained 
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thanks to a bond graph, well known in the 

continuous domain. For a complex system the bond 

graphs allow modeling of physical processes in all 

aspects (electrical, mechanical ...) [5, 6, 34]. The 

observer theory is used for detection and 

localization of single part failures.  As shown in the 

flowchart of Figure 1, this model is coupled to the 

timed automata (TA). TA [7, 8, 35], commonly 

used in the field of discrete event systems [9, 10, 

36], allows to take into account the temporal 

aspects and to follow the dynamic evolution of the 

system as well as the propagation effects of the 

defects. The diagnoser built by automaton can 

refine the location of the fault [11]. 

 

 

Fig. 1. Flowchart of the proposed approach. 

 

The Bond Graphs modeling [12, 13] as a unified 

modeling approach for different physical domains 

is especially suitable for development of multi-

energy systems models [14]. In more detail the use 

of the Bond Graphs for the conception of a 

generator of formal dynamic models of the energy 

processes is compulsory in order to monitor them 

[15,16]. These models generated under formal form 

will be used in order to generate dynamic equations 

of each component. From these equations, it is easy 

to determine equations of processes state and to 

monitor them by the method based on the observers 

since it is robust and efficient compared to Bond 

Graphs models.  

The principle of model-based diagnosis is to 

compare the expected behavior of the system, given 

by a model, with its actual behavior, a defect is 

detected if the residuals, generated by the observer 

model, are different from zero and if one event does 

not come on the desired date. When a fault is 

detected, it is a matter of locating it. This location is 

made from the signature matrix and from time 

identification. 

● Signature matrix: the signature matrix combines 

sensitivity and robustness information for the 

residuals. The dimensions of the signature matrix 

are determined from the number of sensors or 

actuators and the number of residues generated by 

the observer model. 

● Temporal identification: From the time of 

detection of a fault and the various fault modes 

identified in FMEA (Failure Modes and Effects 

Analysis), it is necessary to know how a fault 

spreads in the system and how it will change the 

appearance of future events. 

In order to present our methodology for the 

diagnosis, the paper is organized as follows: 

Section 2 presents a proposed approach for the 

fault diagnosis on a hybrid model as soon as 

possible. An academic example in Section 3 has 

been used to illustrate our approach. Finally, a 

conclusion is presented with some perspectives. 

 

2. DIAGNOSTIC APPROACH BASED ON 

HYBRID MODEL 

 

Many industrial processes are hybrid in nature, 

which means that their behavior results from the 

evolution and interaction of continuous variables 

and discrete variables. For this type of system, little 

work has been devoted to detecting, locating or 

diagnosing failures [17]. The literature in this field 

is abundant and numerous solutions have been 

proposed for continuous and discrete systems, 

linear and nonlinear. 

The mixed approach proposed in this paper is 

based on a combination of two models (continuous 

and discrete). The continuous component is 

described by a set of differential equations obtained 

by bond graph and the discrete component by a 

finite state automaton. This approach evolves 

through an alternation of continuous steps, where 

state variables and time evolve continuously, and 

discrete steps where several discrete and 

instantaneous transitions can be crossed. The 

diagnostic method combines the advantages of the 

three approaches (Bond Graph, Observer and 

Timed Automata) for best performance, particularly 

in the fault locating phase. Each step is described in 

a conventional form. 

For a complex system, the Bond Graph allows the 

modeling of multi-energy physical processes 

(electrical, mechanical, thermal etc). The observer-

based approach is used to generate fault indicators. 

The fault detection algorithm consists of analyzing 

these residuals. The location is made from the 

signature matrix and from time identification. 

 

2.1. Continuous model 

2.1.1. Bond graph modeling 

The Bond Graph is a multi-physical modeling 

tool based on analogy and power exchange capable 

of modeling systems with a single language 

independently of their physical nature. Several 

works have been devoted to the theory of Bond 

Graph [18, 19]. The Bond Graph methodology is 

based on the graphical representation of the power 

exchanges within a system to be modeled and the 

analogy between the variables of different physical 

domains. The power exchange between two 
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elements of a system is represented by a half-arrow 

(or by link), Figure 2, which is characterized by two 

variables: effort variable "e" and flow variable "f", 

called "Power variables". The product of these two 

variables represents the instantaneous power 

exchanged by this link. The direction of the half 

arrow indicates the direction of the power transfer. 

In addition to this energy aspect, the Bond Graph 

tool has important causal properties for the 

modeling of complex systems. Causality, 

represented on the bond graph by a "causal trait" 

placed perpendicular to the link, makes it possible 

to highlight the relations of "cause and effect", or 

"input - output" or "given - unknown". This is one 

of the major advantages of the Bond Graph 

technique to systematically write state equations. 

The convention is as follows: the causal trait is 

placed near the element for which the effort is a 

given, and away from the element for which the 

flux is known (Figure 2). 

 

 
Fig. 2. Representation of a causal bond graph 

element. 

 

The Bond Graph [20, 21] is a physical model 

where parameters are explicitly represented by 

Bond Graph elements. The sources of effort, Se and 

flux, Sf are active elements which provide power, 

the elements of resistive type R, capacitive C, 

inertial I are passive elements which transform the 

power supplied to them into dissipated energy 

(elements R) or stored (elements C and I), the 

elements 0, 1, TF, GY are junction elements which 

are conservative of power and the detectors of 

effort, De and flux, Df represent sensors of effort 

and flux supposed ideal, and therefore not 

consuming power.  

The power exchange in bond graph is 

represented by a half arrow while the exchange of 

information (from a sensor or a controller) is 

modeled by an arrow. A bond graph model is 

structurally observable in state if and only if there is 

a causal path between all the dynamic elements I 

and C and a detector De or Df [22] as shown in 

Figure 3. 

 

 

Fig. 3. The structure of a bond graph model. 

 

 

 

In bond graph, the state variables x are the 

energy variables: the generalized displacement (q) 

and the pulse (p) associated with the elements I and 

C, the inputs u are the sources of effort and flux and 

the measurements y are the effort and flux 

detectors. 

 

2.1.2. Observer-based fault detection and 

location 

2.1.2.1. Principle of diagnosis using an observer 

approach 

Our goal is to study the problem of faults 

detection and localization for systems with faults 

and disturbances. This problem has received 

considerable attention in the past ten years [23, 24, 

25, and 26]. We consider a model-based approach 

for fault detection and location where two steps are 

distinguishable: generation of residuals sensitive to 

faults and location of faults. We design a set of 

observer-based residuals; in such way that the faults 

are always detected and isolated despite 

disturbances and noises. The representation of a 

control loop with different sources of defaults is 

given by Figure 4. 

 

 

Fig. 4. Control loop with different default sources. 

 

The diagnosis using the observer state 

estimation became a method most widely used in 

the industry [27]. The principle of this method is 

given in Figure 5. 

 

 

Fig. 5. Principle of Diagnosis by observer. 

 

2.1.2.2. The observer principle 

Suppose we have a representation of the process 

as a linear dynamic model with m inputs, denoted u, 

and p measured outputs, denoted y. 

With the set of n variables describing the state  

When the system is linear, the equation of state 

and measurement have the following form: 
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(0)


 


 

 



dx
A t x t B t u t

dt

y t C t x t D t u t

x x

                         (1)                                             

In which: 

- ( )A t is the evolution matrix  n n  

- ( )B t is the control matrix  n m  

- ( )C t is the observation matrix  l n  

- ( )D t is the direct transmission matrix  l m  

We note:  ( )
dx

x t
dt

  

The evolution of dynamic system subjected to 

inputs ( )u t and delivering information y( )t is 

entirely characterized by a vector x( )t of size n

linked to the input and output by the relation: 

  

 

 

0

( ) ( ), ( ),

( ) ( ), ( ),

(0)

 







x t f x t u t t

y t h x t u t t

x x

                  (2) 

 

With: 

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )
( ) ;  u( )   ( )

( ) ( ) ( )
n m n

x t u t y t

x t u t y t
x t t and y t

x t u t y t

     
     
       
     
     
     

 

Where is the state vector, is the 

input vector and  is the output vector. 

Note that matrix A, B, and C correspond to the 

state-space description of the linear time-invariant 

system and they have appropriate dimensions with 

those of the vectors x (t), u (t) and y (t) [28]. To 

diagnose the fault, the following observer is 

constructed: 

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(0)

  


 
 

x A t x t B t u t

y t C t x t D t u t

x x

                          (3)                                                                       

 

Where: 

-  
 
is the estimated state vector. 

-  is the estimated output vector. 

 

This system (3) can be written as: 

                                                                       (4) 

 

Since it has been assumed that the pair (A, C) is 

observable, the observer gain matrix L can be 

selected so that (A − LC) is a stable matrix [29]. 

The observer described by equation (4) is illustrated 

in Figure 6. 

 

 
Fig. 6. The structure of observer. 

 

If the system (2) is provided with the state 

feedback, u(t) = -K x(t) + v(t), the closed loop 

system is written as follows:         

 
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

 
   

  
   

x Ax t Bu t
x A BK x t Bv t

y t Cx t
y t Cx t

u t Kx t v t

(5)      

       Where v(t) is input for the closed loop system 

and since it has been assumed the pair (A, B) is 

controllable, the state feedback gain K can be 

selected so that (A − BK) is a stable matrix [29]. 

By realizing a loop-back , 

    The dynamics of the closed loop system is 

written as follows: 

    (6)        

The equation of state of the global system (6) is 

illustrated in Figure 7. 

 

 

Fig. 7. Structure of control by state feedback with 

observer. 

 

The fault detection step is very important in a 

system diagnosis. If this step is not realized 

correctly, the faults can be badly or not detected. 

False alarms can also appear. 

Detection efficiency passes by its robustness 

against model uncertainties. 

The fault location is studied using the fault 

signature matrix. The dimensions of the signature 

( ) nx t R ( ) mu t R

( ) py t R

( ) nx t R

( ) py t R

 ( ) ( ) ( )u t Kx t v t  

   

( ) . ( ) .( ( ) ( ))
  

( ) .( ( ) ( )) ( )

x t A x t B Kx t v t

x t A LC x t B Kx t v t LCx t

   


     

       ( )x t A LC x t Bu t Ly t   
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matrix are determined from the number of sensors 

or actuators and the number of residues generated 

by the observer model. It is a binary matrix whose 

column j corresponds to the defect fj and the line i 

corresponds to the residue ri. 

𝑅 = (

𝑟1
𝑟2
⋮
𝑟𝑗

) = (

1 0 ⋯ 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 1

)(

𝑓1
𝑓2
⋮
𝑓𝑗

)     (7)        

Unfortunately this method does not allow 

locating faults with the same signature. To work 

around this problem, we use Timed Automata. 

 

2.2. Discrete event model: Fault diagnosis 

through the Timed Automata 

A timed automata (TA) is defined as a tool or 

theory for modeling and verification of real time 

systems.  In the original formalism of the tool [30, 

01], a timed automata is a finite state extended with 

a set of real-valued modeling clocks. A finite 

automata which consider us a graph containing a 

finite set of nodes and a finite set of labeled edges 

extended with real-valued variables. In this work, 

we shall focus on timed automata us a tool used to 

generate a model for the analysis of a process and 

especially for the verification of the process 

operation, detection and isolation of failures. 

The clocks of a timed automata evolve 

continuously over time. Thus, each transition 

contains a guard (on the value of the clocks) that 

describes when the transition will be executable and 

a set of clocks that must be reset to zero during 

transition. Each control state contains an invariant 

(a constraint on the clocks) that can limit the 

waiting time in the state and therefore force the 

execution of an action transition.  

Let’s consider the example in Figure 8. S0 is an 

initial state of this automata. The qualitative 

parameters represent the sequence of events (a and 

b) while the quantitative parameters represent the 

temporal parameters (x1 and x2). The invariants x2 ≤ 

2 of S0 and x1 ≤ 3 of S1 indicate, respectively, that 

we can stay in S0 as long as x2 is less than 2 and 

that we can stay in S1 as long as x1 is less than 3 

but not beyond. An invariant is associated with 

each state; it allows to represent the conditions to 

be satisfied to remain in the current state. The 

automata can remain in a state as long as the 

condition of the invariant is satisfied. As long as the 

controller is in a state Si, the clock xi is 

continuously incremented. 

The continuous evolution of the clocks of the 

automata of figure 8 is described by the relation 

, the system can comprise more than one 

clock as a function of the modeling needs, in our 

example it can be seen that there are two clocks 

called x1 And x2. All clocks are synchronized with 

the same increment step. Each transition of the 

automata is linked by an event called guard. The 

guard determines the possible instants to cross the 

arcs; an arc of the automata cannot be crossed until 

after verification of its guard. 

Thus the guard corresponding to the output 

transition of the vertex S0 such that a ^ x2 = 2, this 

implies that the arc can only be crossed if the event 

"a" has occurred and the clock x2 takes the value 2 

the assignment corresponding to this transition is 

x1: = 0, this implies that the crossing of this arc 

causes the zeroing of the clock x1. 

The assignment function allows the evolution of 

the parameters of the timed automata during 

transitions of the automata. During initialization of 

the model the initialization of the states and 

parameters of the model is realized by an initiating 

arc entering in the state S0 (in our case x1: = 0 and 

x2: = 0). 

 

 
 

Fig. 8. Example of Timed Automata. 

 

Our objective, thanks to the use of timed 

automata, is to build a diagnosis system called 

diagnostician which allows to analyze, detect and  

locate a fault in a system. The construction of the 

diagnostician is based on a dynamic model 

representing different functioning modes of the 

monitored system (normal and failing). The 

dynamic model is neither more nor less a copy of a 

control-command program of the system to 

diagnose with added time information such as the 

duration of different steps of functioning, the 

execution order of tasks and the date of event 

appearance. 

 

3. APPLICATION EXAMPLE 

 

3.1. Description of the system 

We consider as example a two tanks hydraulic 

system, Figure 9. 

To fill the first tank T1of section S1 (S1= 0.0154 

m2) with a volume flow qi and height h1 which is 

measured by the level sensor L1. 

At the exit of this tank a valve V1 (of hydraulic 

resistance RV1), always opens to allow the fluid to 

pass in to a second tank T2, of section S2 (S2= 

0.0154 m2) and height h2 which is measured by the 

level sensor L2. 

The outlet flow of this tank is authorized by a 

valve V2 of hydraulic resistance RV2. 

Two overflow sensors: L3 for tank T1 and L4 

for tank T2. 

1x 
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The event variables (discrete) V1, V2, L1, L2, L3 

and L4 are of Boolean nature, that is to say that the 

possible values of these variables are either 1 or  0: 

Vi = {0,1}, Lj = {0,1} with: i = 1,2 and j = 1,2. 

The objective is to maintain the liquid level in 

the two tanks on a well-defined level: 

1 1 1

2 2 2

0.15 0.15 1

0.10 0.10 1

   

   

h m if h m then L

h m if h m then L

   


   

 

 

Fig. 9. Two tanks hydraulic system. 

 

Figure 10 shows the measurements of the levels 

h1 and h2 in normal operation. 

 

 

Fig. 10. The level measurements in the normal operation 

(the continuous evolution). 

 

3.2. Generating a state representation 

The bond graph model in derivative causality of 

the physical system of Figure 9 is shown in Figure 

11. 

 

Fig. 11. Two tank system model by bond graph in 

derivative causality. 

 

Nomenclature: 1: The flux sources Sf models a 

volume flow qi, 2: The element C models a storage 

tank T1, 3: The effort detector De models a level 

sensor L1, 4: The element R models a valve V1, 5: 

The element C models a storage tank T2, 6: The 

effort detector De models a level sensor L2, 7: The 

element R models a valve V2. 

Using the bond graph representation system 

state equations can be directly deducted from the 

bond graph model of the system. In Bond Graph, 

the levels in the two tanks, h1 and h2, represent the 

state variables x = [h1, h2], the input u is the flux 

source: u = [qi] and the measurements y are the 

effort detectors: y = [L1, L2]. Choose as the first 

equation the one corresponding to the junction 01. 

We therefore have: 

                                             (8)                                           

In this equation the flow variables (f5, f1, f6) can 

be determined by following the causal paths on the 

bond graph model of figure 11. 

While f5 variable is calculated from the 

constitutive relation of CT1 element: 

      

                                          (9)                                                                                                                                                                                                   

Where CT1 parameter is given by the following 

relation: 

                                                     (10)                                               

With S1 the section of the first tank, g the gravity 

constant and   the density of the fluid are used, and 

e5 is determined by following the causal path De:L1 

→ e4 → e3 → e2 → e5 e5 = e2 = gL1. 

We therefore have:  

                                       (11)                           

                                               (12)                                                                                                                

The variable f1 corresponds to the source of flow 

(Sf: qi). We can thus write: 

                                                     (13)                                            
 

The variable f6 can be obtained from the 

constitutive relation of the element R: 

                                              (14)                                       

The variable e7 is calculated from the equation 

of junction 11: 

                                                   (15)                                   

The causal path De: L1 → e4 → e3 → e2 → e6 

allows calculating the variable e6: 

                                         (16)                          

And e8 is determined by following the causal 

path De: L2 → e12 → e11 → e10 → e8 

 

                                          (17)                              

We therefore have: 

                                           (18)                                                                                                                                                         
 

We can therefore write: 

                                           (19)                              

5 1 6 0f f f  

5 1 5. (e )T

d
f C

dt


1

1T

S
C

g


1

5 1. ( )
S d

f gL
g dt






1

5 1

dL
f S

dt
 

1 if q 

7

6 7

1

,
v

e
f f

R
 

7 6 8e e e 

6 2 1e e gL  

8 10 2e e gL  

7 1 2( )e g L L  

1 2

6

1

( )

v

g L L
f

R

 
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The first equation is obtained as follows: 

              1 1 2

1

1

( )
i

v

dL g L L
S q

dt R

 
                  (20)                       

Knowing that h1 = L1, it is easy to deduce the first 

state equation: 

1

1

1 2

1 1

1
( )

.
i

v

dh g
q h h

dt S S R


  

           (21)                                                                                                                    

By proceeding in the same way as for equation 

(8), a second one can be generated from the 

equation of the junction 03. We can thus write: 

                                                (22)                                

The variable f9 can be determined by the 

constitutive relation of the element CT2as follows: 

                                           (23)                                
 

The causal path De: L2 → e12 → e11 → e10 → e9 

allows to calculate the variable e9: 

                                      
(24)                                  

The parameter CT2 is given by the following 

relation: 

                                                     (25)                                 

With S2 the section of the second tank, g the 

gravity constant and  the density of the fluid are 

used. We can then write: 

                                                

(26)                             
The variable f13 can be obtained from the 

constitutive relation of the element R: 

                                           (27)                         

The causal path De : L2 → e12 → e11→ e10 → 

e13→ e14allows to calculate the variable e14: 

                                      (28)                                                                                                                                                                     

We can therefore write: 

                                              (29)                                                                                                                                                                        

According to the law of conservation of the 

junction 11 and from the equation (19), we have:       

                   (30)                                                                                                                                           

 

The second equation which is structurally 

independent of the first is thus: 
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Knowing that h1 = L1 and h2 = L2, it is easy to 

deduce the second state equation, which is 

structurally independent of the first, is thus: 

        1

2 2

1 2

2 2 2
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. .v v
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h h
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                (32)                                                                                                                                                                                                        

The state equation of a two-tank system, figure 

9, is obtained from equations (21) and (32) 

generated by the bond graph model in Figure 11.
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The measurements are given as follows: L1 = h1 

and L2 = h2. 

The system can be brought back in a stable 

closed loop system by the state feedback where 

 1 2K k k is the state feedback gain and v(t) is 

input for the closed loop system. 11 12

21 21

i

L L
L

L L

 
  
 

The state equation obtained equation (33), takes the 

following form: 
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                             (35)                                                                                                                                              

    

 

3.3. Observer-based fault diagnosis method 

Method using observers consists of 

reconstructing, from the mathematical model of 

equation (35), the output system through an 

estimate of the system states.  

( ) ( ) L(y y)
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          (36) 
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This method is capable of solving the fault 

detection and location problem by the evolution of 

residues as illustrated in figure 7. Indeed, the 

deviation signal or residual between the 

measurements and the outputs estimation (error 

estimation on outputs) is only a function of noises, 

model errors and failures. With the estimation error 

(or residual): r(t) =
 

 

3.4. Faults signature matrix 

The residuals generation consists of comparing 

measurements stemming from the system to their 

estimations stemming from observer-based model. 

Only one residual allows fault detection at the level 

of a sub-system. However, the fault location 

requires a set of structured residuals. These residues 

must be designed to be sensitive to certain faults 

and insensitive to others, allowing thus the location 

of the failing element: symptoms are generated and 

compared to fault signatures. 

These residues lead to the fault signature matrix 

which is given by Table 1. 

By analyzing this matrix we see well the 

components signatures valve V2 and level sensor L2 

are unique which means failures of these 

components are isolable. On the other hand, the 

components signatures valve V1 and level sensor L1 

are identical which means the failures affecting 

these components cannot be isolated. To solve this 

problem another additional tool is used namely a 

timed automata in order to differentiate these two 

failures. 
Table 1. Fault signature matrix 

Failure mode Components r1 r2 

Valve V1 

Stuck_Close 
Valve V1 1 0 

Valve V2 

Stuck_Close 
Valve V2 1 1 

Valve V2 

Stuck_Open 

Level sensor L1 

Stuck_Close 
Level sensor L1 1 0 

Level sensor L1 

Stuck_Open 

Level sensor L2 

Stuck_Close 
Level sensor L2 0 1 

Level sensor L2 

Stuck_Open 

Li Stuck_ Open means the sensor always remains in 

state 0 (the sensor does not detect the high level); 

Li Stuck_ Close means the sensor always remains in 

state 1 (the sensor does not detect the low level); 

Vi Stuck_Close means the valve number i remains 

closed to an opening request; 

Vi Stuck_Open means the valve number i remains 

open to a closing request; 

 

3.5. Diagnosis method based on Timed Automata 

Dynamic model where timed automata is used 

contains all possible states (normal and failing 

states) of a system, which allows following its 

temporal evolution. Thanks to the trajectory that we 

follow to go from an initial state to a failure state, 

we are therefore able to locate a fault by 

quantifying the times spent in the transitions. 

In order to locate faults having the same failure 

signatures (i.e. defects valve V1 and level sensor 

L1), it is necessary to apprehend the different phases 

of diagnosis (construction of the dynamic model, 

detection and location phase). All the times 

concerning faults detection and location have been 

found mathematically or from simulations taking 

into account a default. Indeed, the first step consists 

in establishing the system dynamics, Figure 12. The 

objective is to know how the system behaves in the 

course of time. 

 

 
Fig. 12. Discrete event model corresponding 

to the two tanks system. 

 

Figure 13 shows us the final state of the 

diagnostician in a two-tank system. 

In the above figure, we distinguish three parts: 

the faultless functioning part of the two-tank system 

(diagnostician phase 1), the detection part and 

finally the fault location part. 

The first part of the diagnostician corresponds to 

the system control Grafcet but with temporal 

information in more. We can see the 

correspondence states / transitions between the 

control Grafcet, figure 14, and the diagnostician 

Phase 1 (normal state), Figure 13-(a). In the case 

where the execution times of the diagnostician 

Phase 1 are not respected, we are thus in the 

presence of a defect. The second phase of 

diagnosis, Figure 13-(b), concerns the fault 

detection. In the case where one of these conditions 

is not respected, the diagnostician goes from a 

normal state to a fault detection state. The third step 

of diagnosis, Figure 13-(c), consists in the fault 

location. Each detection state has a necessary 

condition to go from the location detection. Indeed, 

following the detection of a fault, and of the 

different failure modes identified in the FMEA 

(Failure Modes and Effects Analysis), we need to 

know how the fault will spread in the system and 

how it will modify the appearance of future events. 

(The state of the valve takes the value 0 for 

closed and the state of the valve takes 1 for open) 

(“&” corresponds to logical AND; “!” corresponds 

to logical NON). 

 

( ) ( ) ( )t y t y t  
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Fig. 13. Diagnoser of two-tank system 

a) Dynamic model, b) Detection phase, 

c) Location phase. 

 

Fig. 14. Control Grafcet. 

 

The diagnostician construction is based on the 

temporal knowledge of the system it is necessary to 

know the times of the system such as, for example, 

the opening time of the valves or the change time of 

the sensors state. Figure 15 illustrates the nominal 

behavior of the system over an operating cycle. 

The two diagnosis methods (Observer and 

Timed Automata) work in parallel. Indeed, the 

observer-based methods consist of detecting and 

locating a fault on a studied system at any instant 

and without delay. And the timed automata based 

method allows to locate the defects which cannot be 

isolated by the first method (observer-based 

method) and also to identify the causes of failure 

more precisely (i.e. for a valve V2 default, the valve 

V2 remains closed during an opening request or the 

valve V2 remains open during a closing request) but 

with some delay. 

 

 

Fig. 15. Normal behavior of our discrete 

system. 

 

4. SIMULATION RESULTS 

 

The simulation model is made in Matlab 

simulink , state-flow. 

In order to test the effectiveness of the faults 

detection and location technique of the proposed 

diagnosis approach, we injected defects in a random 

way. 

At first, we injected a fault on the valve V2 at 

the instant t = 3s. Figure 16 shows the response of 

residuals R1 and R2 and their sensitivity to this 

failure. If we refer to the signature of valve V2 

given by Table1 we note this result is appears as 

expected or is aligned with expectations. In other 

words, if valve V2 fails, only residuals R1 and R2 

will exceed their respective thresholds. 

 

Fig. 16. Response of the residuals in presence 

of a fault on valve V2 (Observer-based 

method). 

 

More precisely, Figure 17 shows the valve V2 

remains closed during an opening request (V2 

Stuck_Close). 

In the above figure, despite the opening request 

(green signal), valve V2 remains closed (red signal). 

This instant represents the occurrence of a failure. T 

occurrence = 3 sec. 
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Subsequently, L1 and L2 sensors (purple signal) 

remain in state 1; 0.002 sec after the opening 

request of the valve V2. This instant represents fault 

detection instant. T detection = 3.02 sec. State ED2 

of diagnostician, figure 13. Finally, the detection is 

enough for the location. T location = 3.024 sec. 

V2_SC State of the diagnostician, Figure 13. 

 

 

Fig. 17. Diagnosis of the fault valve V2 

Stuck_Close (Timed Automata based 

method) 

 

Then, we injected a fault on the valve V1 at the 

instant t = 7s. The responses residuals to this failure 

are given in Figure 18. 

The signature of the valve V1 given by Table 1 

merges with the signature of the level sensor L1 

and consequently, this failure is detectable but not 

localizable. 

 

 

Fig. 18. Response of the residuals in presence 

of a fault on valve V1 (Observer-based 

method). 

 

With the diagnosis method based on Timed 

Automata the fault valve V1 can be located. Figure 

19 shows the valve V1 at the instant t = 7s remains 

closed during an opening request. 

In the above figure, valve V1 remains closed 

(red signal) during an opening request (green 

signal). This instant represents the occurrence of a 

failure. T occurrence = 7 sec. 

 

 

Fig. 19. Diagnosis for the fault valve V1 

Stuck_Close (Timed Automata based 

method). 
 

Subsequently sensor L2 (purple signal), remains 

in state 0; 0.053 sec after the opening request of 

valve V2. 

This instant represents the fault detection 

instant. T detection = 7.026 sec. State ED5 of 

diagnostician, Figure 13. 

Finally, sensor L3 (brown signal) remains in 

state 1 and sensor L4 (cyan signal) remains in state 

0; 0.091 sec after the activation of the detection 

state. This instant corresponds to the fault location. 

T location = 7.12 sec. V1_SC State of diagnostician, 

Figure 13. It is therefore possible to locate this fault 

by Timed Automata. 

After several simulations, this diagnosis 

approach (using the Bond graph, the Observer and 

Timed Automata) detects and locates every defect 

at any time, it is reliable. Furthermore, the 

observer-based diagnosis method does not impose 

constraints or very restrictive conditions. Also, 

noteworthy is its robustness vis-a-vis of 

measurement noises. Although generated residuals 

are influenced by noises, faults can always be 

detected and isolated as quickly as possible. As a 

result performances of the diagnosis method based 

on Timed Automata (detection and location 

deadlines) are related to temporal characteristics of 

setting up the process and instrumentation. 

 

5. CONCLUSION & PERSPECTIVES 

 

The diagnostic method, in our work, combines 

the advantages of the three approaches (Bond 

Graph, Observer and Timed Automata) in order to 

obtain the best performances. 
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In this paper, we discussed the problem of faults 

diagnosis on a complex hybrid system thanks to the 

use of the bond graph and observer well known in 

the continuous field, coupled with the timed 

automata used in the field of Discrete events 

systems. The proposed approach solves the problem 

of fault identification. 

The approach used consists, first, to model a 

complex physical system using the Bond Graph, in 

order to generate residues (or defects indicators), 

sensitive to any defect affecting the system to be 

monitored, by the observer model. Then, it is 

necessary to analyze these residues to detect the 

presence of a defect. Finally, the fault locating 

procedure is performed from the fault signatures 

matrix derived from the observer model and from 

time identification and the FMEA. 

A perspective of this work is to extend our 

approach to take into account the diagnosis problem 

when the system is affected simultaneously by 

actuators and sensors faults. Another problem not 

addressed in this paper would be study and the 

mastery of propagation of defects in a hybrid 

system. 
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