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Abstract 

Recently, the reduction of fuels consumption is a global challenge, in particular for significant investments 

in the automotive sector, in order to optimize and control the parameters involved for the partial or total 

electrification of vehicles. Thereby, the energy management system remains the axis of progress for the 

development of fuel cell hybrid electric vehicles. The fuzzy controller has been widely adopted for energy 

monitoring, where the determination of its parameters is still challenging. In this work, this problem is 

investigated through a secondary development of a fuzzy energy monitoring system based on the Advisor 

platform and particle swarm optimization. The latter is used to determine, for different driving conditions, the 

best parameters that increase the fuel economy and reduce the battery energy use. As a result, five tuned 

fuzzy energy monitoring system models with five sets of parameters are obtained. Evaluation results confirm 

the effectiveness of this strategy, they also show slight differences between them in terms of fuel economy, 

battery state of charge variations, and overall system efficiency. However, the fuzzy energy monitoring 

system tuned under multiple conditions is the only one that can guarantee the minimum of the state of charge 

variations, no matter the driving conditions. 
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Nomenclatures 

FCHEV  Fuel Cell Hybrid Electric Vehicle  

EMS  Energy Management System  

PTC_ADV  Power Tracking Controller based 

Advisor 

FC  Fuel Cell 

PEM  Proton exchange membrane fuel cell  

BAT  Battery 

SC  Super Capacitor 

PFS  Power Following Strategy  

GA  Genetic Algorithm 

DP  Dynamic Programming  

PMP  Pontryagin’s Minimum Principle  

PSO  Particle Swarm Optimization  

WSO  Weighted Sum of Objectives  

FLC  Fuzzy Logic Control  

FUZ.TUN (.) Fuzzy Tuned Function of n Driving 

Cycle 

VL  Very Low 

L  Low 

M  Medium 

H  High 

VH  Very High 

PFC  Power Fuel Cell   

MPG  Mile Per Gallon  

SOC  State Of Charge  

SOH  State Of Health  

SOC  Difference between the SOC at the 

start time and at the end of the cycle  

SD SOC  Standard Deviation of the SOC 

batC   Battery capacity 

consVE _
    Vehicle energy consumption 

reqP   Required power 

v   Vehicle speed 

t   Transmission efficiency 

M   Mass of the vehicle 

g    Acceleration due to gravity 

rf   Rolling resistance coefficient 

   Slope angle of the road 

a    Air density  

DC   Aerodynamic drag coefficient 

fA   Cross sectional area of the vehicle 

     Rotational inertia factor 

)(xF   Fitness function  

N     Number of the driving cycles  

)(xJ n    Objective function  

)(, xg ni    Constraints for n driving cycle 

OverallEff       Overall efficiency 

UDDS  Urban Dynamometer Driving 

Schedule 

NEDC              New European Driving Cycle 

HWFET  Highway Fuel Economy Test 

WLTP Class 3a Worldwide Harmonized Light 

Vehicles Test Procedure Class 3a 

MULTI   Multi Driving Cycles 
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1. INTRODUCTION  

 Despite the predominance of the conventional 

car in the transportation industry, the number of 

eco-friendly cars manufactured became recently 

more significant. The fuel cell hybrid electric 

vehicle (FCHEV) is one of the best candidates to 

lead the future automotive market. Besides the zero 

CO2 emission of the FCHEVs, they have many 

advantages that make them more competitive. Even 

though they are in need of improvement, they are 

more efficient than conventional vehicles, they 

have a short refueling time, and they have a large 

driving range [16]. 

 The FCHEV requires a fuel cell as the main 

power source and an additional storage source. It 

also requires an energy management system (EMS) 

that plays a crucial role in controlling the power 

between sources in order to ensure the vehicle's 

performance. It has a major impact on improving 

the fuel economy [13].  

 Numerous studies focusing on these strategies 

used in fuel cell hybrid systems have been reported 

in the energy storage industry literature. Recently in 

2020, Cao Y. et al. in [2] realized a hybrid PV / fuel 

cell system optimized by metaheuristic techniques 

for the electric supply of a wind turbine and 

Radaideh MI. et al. in [14] have optimized the 

design of hybrid fuel cell systems under operating 

constraints for the purposes of energy production 

and cooling. Also in 2019, Wang Y. et al. in [22] 

proposed an energy management system for a 

hybrid fuel cell / battery vehicle, integrating the 

degradation of fuel cells and the battery in the 

maintenance aspect of this type of system.  

 Indeed, Guo J. et al. in [5] proposed a modern 

method of energy management in real time for a 

hybrid electric vehicle in the same direction Mehta 

R. et al. in [10] realized an intelligent system for the 

energy management of electric vehicles and Wu X.  

et al. in [24] applied an optimal control strategy for 

the energy management of electric vehicles and 

Bhatti AR. et al. in [1] carried out a technical-

economic study based on inference rules for the 

energy management of electric vehicles at constant 

price using a photovoltaic network system. 

Regarding the studies of energy management 

systems, they can be classified into two main 

categories: rules based and optimization based.  

 The EMS based on fuzzy logic control (FLC) is 

one of the most popular methods, it has attracted 

many researchers [7, 9, 11 25-26]. It has many 

advantages, being simple, robust and flexible when 

the model is nonlinear. However, this strategy 

cannot be efficient if the driving profile is not 

previously known, therefore it cannot have optimal 

results in practice. In addition, most of the research 

results are based on simulations and 

implementation on hardware is still lacking [18]. Li 

Q. et al. in [9] implemented an FLC model in the 

Advisor platform. They proposed two structures: 

FC/BAT and FC/BAT/SC in order to increase the 

fuel economy and the mileage considering driving 

modes to design the fuzzy parameters. Results show 

better performances for these two proposed 

structures than the power tracking controller 

(PTC_ADV) embedded in the Advisor software. 

Hemi et al. in [6] propose three configurations: 

FC/BAT, FC/SC and FC/BAT/SC. These models 

are implemented in a modified Simulink model 

proposed by Tremblay et al. in [21]. They are 

evaluated in real time driving cycles, simulation 

results show that the proposed models satisfy the 

power requirement. The last configuration enables a 

fast charging and discharging which improves the 

battery lifespan. Zhang G. et al. in [25] propose a 

fuzzy EMS for a FC/BAT hybrid locomotive based 

on the Advisor software. They use the Advisor 

auto-optimization method to optimize the size of 

the FC and the Acid battery in order to improve 

their efficiencies and the fuel economy. They use a 

fuzzy model to control the power flux between 

these sources. A comparison of results between the 

developed models with the power following 

strategy (PFS) under a real operating subway's 

driving cycle shows an improvement of fuel 

economy, dynamic priorities, and a large increase 

of FC efficiency. However, the battery, as well as 

other components’ efficiencies, decrease in 

comparison with PFS. 

 In these previous studies, the selection of the 

fuzzy parameters is not focused enough. However, 

due to the high number of the fuzzy parameters, the 

selection of the best parameters of the controller by 

trial and error is very problematic [11]. Much 

research focuses on this subject; Chun-Yan L. et al. 

in [4] propose an optimized Fuzzy EMS for a 

FC/BAT hybrid vehicle, where the fuzzy EMS 

parameters are optimized by the direct algorithm to 

maximize the efficiency of the fuel cell under three 

profiles. Results show that these parameters are 

close. The authors conclude that the proposed 

controller can be adopted on real driving 

conditions. Caux S. et al. in [3] present an EMS 

based on fuzzy and their parameters are tuned by 

genetic algorithm (GA) to maximize the energy 

economy, where the results are higher when 

compared to the results obtained by using dynamic 

programming (DP) which is considered as a 

reference. In order to validate these results for a real 

driving profile, authors apply the optimized 

parameters obtained for each driving profile on 

another profile. They conclude that the given results 

are to some extent acceptable. The authors interpret 

this as the similarity of the harmonic contents on 

the power profiles. Odeim F. et al. in [12] propose 

two real time EMSs: PI controller based on 

Pontryagin's minimum principle (PMP) with three 

parameters and fuzzy controller. They use GA to 

optimize its ten parameters to minimize the fuel 

consumption while maintaining the state of charge 

(SOC) deviation, with six driving cycles are 

engaged in the optimization process to have a 

further robustness on real time conditions. Results 
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show the out performance of the PI strategy over 

the fuzzy strategy. Ravey A. et al. in [15] apply GA 

to define the set of fuzzy parameters to reduce the 

fuel consumption and maintain the SOC of the lead 

acid batteries at the end of the cycle the same as the 

SOC initial, the optimization is processed under one 

driving cycle. Simulation results are close to DP 

strategy results. However, they are lower when this 

strategy is applied in a real FCHEV. Kandidayeni 

M. et al. in [7] propose an FLC for FCHEV, they 

use particle swarm optimization (PSO) to find the 

optimal fuel cell and battery sizes and it is used 

again to define the optimal fuzzy parameters over 

different traffic patterns to reduce the fuel 

consumption.  

 The optimization results are compared with GA 

optimization results, this optimal controller keeps 

the fuel cell work at its high efficiency. At a second 

stage, in order to be applicable to different 

conditions, the fuzzy controller is tuned over the 

TEH-CAR driving cycle to attain the optimal fuel 

consumption. This study shows good results in 

terms of fuel consumption, despite the SOC results 

are not shown in this work. Zhang R. et al. in [26] 

develop an EMS for an FC/CS vehicle based on 

fuzzy system, where the fuzzy parameters are tuned 

by GA to minimize the fuel consumption and the 

fuel cell current fluctuations. The NEDC cycle, as it 

has the highway and urban profiles, is delegated in 

the optimization process. This bi-objective problem 

is converted to a single objective by using the 

weighted sum of objectives (WSO) method. Results 

over many driving profiles show a reduction of the 

current fluctuations and the fuel consumption.  

In this work an energy management and 

monitoring strategy is presented, based on fuzzy 

first order of Sugueno, its membership function and 

weights are selected by PSO. The main objectives 

of this development are to tune the fuzzy EMS 

under different conditions to maximize the fuel 

economy mile per gallon (MPG) and maintain the 

SOC variation in the lowest range at the end of the 

trip while keeping the vehicle performance. The 

development of the fuzzy EMS model is 

implemented in the Advisor simulator software. 

Four driving cycles are engaged independently and 

altogether in the optimization process. Therefore, 

five tuned fuzzy are obtained and evaluated under 

the considered driving cycles.    

In this paper, the second section introduces 

initially an overview of the proposed approach 

followed by a description of the FCHEV model in 

the Advisor. The third part will be dedicated to the 

development of the fuzzy EMS and the 

optimization process. The results will be discussed 

and a conclusion with future work will be presented 

in the last section. 

2. ENERGY MANAGEMENT AND 

MONITORING SYSTEM 

 The electric vehicle is emerging as a strategic 

environmental solution to tackle one of the biggest 

energy challenges. However, these processes 

require an energy storage system, in order to 

improve the environmental performance of urban 

areas. The state of charge of the battery (SOC) is 

dependent on its state of aging, given by the 

following equation [1]: 

( )

( ) ( ) 
−

−

−−

−

−

−=

−
==

1

0

)(
100

100100

01

1

t

tactbat

actbat

utibatactbat

actbat

resbat

dtti
C

tSOCtSOC

C

CC

C

C
tSOC

   (1) 

with ( )0tSOC  is the initial state charged to 100%, 

)(ti  is the current flowing through the battery, 

resbatC −  is the estimated residual capacity in Ah 

at 1tt = , actbatC −  is the current nominal capacity in 

Ah taking into account aging, utibatC −  is the 

capacity used in Ah discharged during of the cycle. 

 The SOC is expressed as a percentage and it is 

referenced to 100% when the charging current has 

not changed for two hours ( 0t ), for charging at 

constant voltage and constant temperature. In a 

standardized way, it most often corresponds to the 

ratio between the residual capacity and the current 

nominal battery capacity. Also, the state of health 

of the battery (SOH) makes it possible to define its 

aging, it is an indicator which quantifies the 

reduction in performance due to the degradation of 

its capacity or the increase in its internal resistance, 

which can be determined with the following 

formula: 

 
nombat

actbat

C

C
SOH

−

−=100                               (2) 

where actbatC −  is the nominal capacity in new 

condition in Ah and nombatC −  is the current nominal 

capacity in the cycle considered in Ah. 

2.1. System description  

As previously mentioned, this research focus on 

fuzzy inference variables selection and how they 

can be impacted by the driving conditions as well 

as how they can impact on the fuel consumption 

and the battery energy use. The Fig.1 presents an 

overview of this proposed methodology, through 

the Advisor environment, we develop and 

implement a fuzzy energy management system to 

split the power between the fuel cell and the battery 

of the FCHEV. The Advisor provides a powerful 

tool for a fast design and analysis of different 

powertrains [23]. The optimization tool PSO is 

introduced to interact with the FCHEV model.  
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Fig. 1. Diagram of the monitoring system 

 The PSO is responsible for monitoring the fuzzy 

variables for different driving conditions, the 

objective function is designed to give the optimal 

fuel economy while maintaining the battery state of 

charge variation and ensuring the vehicle dynamic 

performance [17, 19]. Recently, the main axis of 

progress for the development of electric vehicles is 

based on the development of storage systems for 

on-board energy providing solutions for improving 

the autonomy, mass and lifespan of this type of 

system. Indeed, the time cycle used by the vehicle 

is equivalent to minimizing the discharge of the 

battery compared to its maximum state of charge 

which is the objective function, given by: 

=
),(

,,)(min)(
vu

vuvux xCxJ             (3) 

where vux ,  is the indicating variable selected, vuC ,  

is the associated energy cost. 

 However, electric vehicles are equipped by 

several electronic components and are exposed to 

direct electrical risks, even in the event of a 

breakdown. A good monitoring strategy, based on 

the control of their energy variables is necessary to 

eliminate and minimize breakdowns and the 

presence of failures. The implementation of such 

objectives requires detailed studies in order to 

define, optimize and control these parameters 

involved. In this work, the best parameters for each 

case are saved in the Advisor for assessment. 

2.2. Fuel cell battery model 

The FCHEV, shown in Fig. 2, is mainly composed 

of the traction motor, the fuel cell (PEM), the 

battery pack, the DC/DC power converter and the 

EMS [23].  

 

Fig. 2. FCHEV configuration in Advisor 

 The traction motor provides the propulsion 

power of the vehicle, the size of the motor should 

be selected by calculating the maximum power 

required from the equation:  
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    (4)                

where reqP , v , t , M , g , rf ,  , a , DC , fA , 

  are respectively the required power, the vehicle 

speed, the transmission efficiency, the mass of the 

vehicle, the acceleration due to gravity, the rolling 

resistance coefficient, the slope angle of the road, 

the density of air, the aerodynamic drag coefficient, 

the cross-sectional area of the vehicle, and the 

rotational inertia factor. 

 The energy consumed is obtained by integrating 

the power of the vehicle with respect to the travel 

time ( cyt ), given by:  

=

cyt

VconsV dttPE
0

_ )(                   (5) 

 The power and energy consumptions of an 

FCHEV depend on the driving cycle, but also on 

the characteristics of the vehicle in terms of weight, 

volume, coefficient of penetration into the air [12].  

 The fuel cell is the principal source providing 

the most power required by the traction motor, the 

battery as an additional source assists the fuel cell 

to improve its performances and stores the braking 

energy, which increases the system efficiency. In 

this paper the specifications of the FCHEV in 

Advisor are summarized in Table 1 [20]. It should 

be noted the sizing of the components has not been 

considered in this study.  
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Table 1. The FCHEV parameters in Advisor 

Vehicle 

Mass (kg) 592   [%] 90 

Cargo Mass (kg) 136   1.043 

Center-Height (m) 0.5 g [
1−ms ] 

9.81 

Wheelbase (m) 2.6 
fA [

2m ] 
2 

Air density  - 
a [

1−Kgm ] 
1.202 

Motor 

Type  AC 

Induction 

Max Power 

[kW] 

100 

Mass (kg)              122 Peak efficiency 0.92 

Fuel Cell 

Type  PEM Max Power 

[kW] 

50 

Mass (kg) 223 Peak efficiency 0.6 

Battery 

Type  12 V 26 
Ah 

10 EP 

VRLA 

Max Capacity 
[Ah] 

45 

Mass (kg)   495 Voltage [v] 12 

 

3. FUZZY DEVELOPMENT AND PSO 

3.1. Fuzzy logic model 

 The Fuzzy logic has been commonly used as a 

controller in energy management systems, it has 

many advantages, it is based on If-Then rules and 

membership functions which imply the knowledge 

of human expertise, it doesn’t require the exact 

model of the system and it has an inherent 

robustness [19].  

 The proposed EMS model is the first order 

Sugeno fuzzy that is implemented with two inputs 

and one output. The inputs variables are the 

required propulsion power reqP  and the state of 

charge of the battery SOC. The output variable is 

the fuel cell reference power (PFC). The input reqP  

consists of 5 Fuzzy subsets; VL: Very Large, L: 

Large, M: Medium, H: High, VH: Very High. Its 

domain of discourse is between  maxmin req, req, PP , 

taking into account the braking and the acceleration 

power. The input SOC consists of 3 fuzzy subsets 

{L M H}, with the range of discourse between [0 

1]. The output PFC has the range of  max0 PFC ; it 

includes 5 fuzzy subsets; VL:  {VL L M H VH}. 

The trapezoidal shape is chosen to describe each of 

all of the linguistic variables. Therefore the fuzzy 

inference system is formulated by 15 rules which 

are summarized in Table 2.  The typical rule in a 

Sugeno fuzzy model has the form:  

rix + qiy +  is z = pithe output     then 

 is y, Input  is x and If Input 21
          (6) 

 For a zero order Sugeno model, the output 

level z  is a constant ( 0== qp ), each rule weights 

its output level iz , by the firing strength of the rule 

iw . The final output of the system is the weighted 

average of all rule outputs, computed as:  





=

=


=
N

i

i

N

i ii

W

ZW
Z

1

1                 (7) 

where N  is the number of rules. 

 The model is set up to be compatible with 

Advisor blocks and it can be embedded into the 

hybrid vehicle model as shown in Fig. 3. To make 

the model work properly and loaded from the setup 

screen, the following steps are necessary:                                                                                                 

Step1: Create the proposed model with Simulink 

blocks and match the inputs and the outputs the 

same as the existing control models     

Step2: Create a fuzzy system with the interpreted 

Simulink Matlab function block 

Step3: Unlock the Advisor control library to log the 

new subsystem 

Step4: Create a new file in Advisor control folder 

including the name of the new controller and   all 

power train control parameters, including gearbox, 

clutch, hybrid, and engine controls     

Step5:  Make changes to the existed Advisor 

function by adding the new controller in the block 

choice list, this function is responsible to set all the 

configurable subsystems to their proper choices for 

the current block diagram [20]. 

 

Fig. 3. Fuzzy EMS Simulink model in Advisor 

Table 2. Rules table 

PFC 
reqP  

VL L M H VH 

S
O

C
 L L M H H VH 

M VL L M H VH 

H VL L M H VH 

3.2. Optimization of the model by particle 

swarm 

 As previously stated, it is critical to determine 

by trial and error the fuzzy parameters to improve 

the EMSs performances.  However, using tools of 

optimization should be effective [18]. Many 
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researchers have been introducing these tools to 

optimize the fuzzy parameters such as genetic 

algorithm GA and PSO. Hence PSO is chosen to 

tune the fuzzy parameters. It is extremely simple 

and powerful [8].  

3.2.1. Problem formulation 

 The average fuel economy that is given by MPG 

is chosen as the objective function that has to be 

maximized, it has been defined as: 

( )MPGxJ max)( =                      (8)   

 To satisfy the vehicle performances, PSO must 

evaluate the objective function with constraints, the 

PSO requires the prior setting of several monitoring 

parameters depending on the problem considered. 

Hence, the performance of PSO has a strong 

correlation with the adjustment of these parameters. 

The mathematical model of PSO is simple by 

defining these concepts on every iteration of the 

PSO position and the velocity of every particle is 

updated according into this simple mechanism. The 

particle moves toward a new position by using all 

these vectors. The new updated position denoted by 

)1( +txi


 it's the new position with a new velocity 

denoted by )1( +ti


. The mathematical model of 

motion of particles in the PSO can be described as 

follows: 

( )
( ))()(

)()()()1(

22 txtgrc

txtprctwt

i

iiiiii

−+

−+=+ 
            (9) 

With:  

)1()()1( ++=+ ttxtx iii              (10) 

Where i  is the index of the particle, )(ti  is the 

velocity of particle i  at time t  and )(txi  is the 

position of particle i  at time t , the parameters w , 

1c  and 2c  are user supplied coefficients, 1r   and 2r  

are random values regenerated for each velocity 

update. The value )(tpi  is the individual best 

candidate solution for particle  i  at time and )(tg  

is the swarm’s global best candidate solution at 

time t . 

 In this work, the behavioral influence of each 

parameter is analyzed using the PSO, in order to 

determine the optimal set of parameters. This 

represents a means to measure the quality of each 

solution of the objective function by seeking the 

optimal value. The fitness function will take this 

form: 

)()()( xgxJxF i+−=                                (11) 

where )(xF  is the fitness function, )(xJ  is the 

objective function that should be negative, )(xg i  is 

a group of nonlinear inequality constraints that will 

be evaluated by the penalty technique. Hence two 

constraints are considered, the difference between 

the state of the charge SOC at the start time and at 

the end of the cycle SOC has to be up to 0.005, the 

second constraint is the difference between the 

available speed and the required speed that must be 

up to 0.62m/h. To determine SOC values of battery 

current mathematically is given by: 


+

−+=
0

0

)(
1

)( 0

t

t
lossb

rated

dtII
C

tSOCSOC        (12) 

where )( 0tSOC  is the initial state of SOC, bI  is 

the battery current, lossI is the consumed loss 

current, ratedC is the optimal capacity 

3.2.2. Optimization under multi driving cycle 

 As mentioned earlier, optimal parameters 

selected under one driving profile may not be 

optimal under another one or it may affect the 

vehicle performances in worst cases. In this 

experiment, we attempt to select the best 

parameters that can be applied for many driving 

conditions, to achieve this goal, the objective 

function should be the sum of the objective function 

for each n  driving cycle, and therefore the fitness 

function should be:  

 =
+−=

N

n ninN xgxJxF
1 , )()()(           (13) 

Where )(xFN  is the fitness function, N  is the 

number of the driving cycles considered, )(xJ n , 

)(, xg ni  are the objective function, the constraints 

for each driving cycle respectively. These 

constraints remain the same as defined in the 

previous paragraph. 

3.2.1. Fuzzy inference variables selection 

 To find the best fuzzy parameters that maximize 

the fitness function, 32 particles are implemented in 

the optimization process, representing the fuzzy 

membership functions and the weights; (P1 to P4), 

(P5 to P12) and (P13 to P17) represent the inputs 

SOC, reqP  and the output PFC, respectively, with 

the trapezoidal distribution of MFs. The weights are 

coded into 15 particles; (P18 to P32), in each 

iteration, each particle represents a potential 

solution and it is evaluated during a test drive cycle 

with the objective function.  

4. OPTIMIZATION PROCEDURE  

4.1. Driving cycles selection  

 It was already known that the driving condition 

is one of the factors that has a significant impact on 

the vehicle performance. Four standard driving 

cycles are selected in this study for optimization 

and evaluation of the model, they describe different 

conditions, speeds and high accelerations. The 

UDDS describes the drive in the city, it has a low 

speed and large periods of stops. The NEDC 
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consists of four repeated urban sequences and one 

extra-urban cycle. The HWFET has a high speed 

and no stops periods through all the cycle. The 

WLTP that recently replaced the NEDC for 

approval testing of light duty in Europe vehicles, it 

includes urban, extra urban and highway driving 

sequences. Curves, histograms and some statistical 

features are shown in Fig. 4-5 and Table 3, 

respectively. These driving cycles are commonly 

used for official fuel economy test. The first three 

are available in the Advisor library. Hence the 

WLTP class 3a is selected and added to the Advisor 

library as well.  

 

 

Fig. 4. Driving cycles speed curves 

 

 Fig. 5. Driving Cycles speed histograms 

Table 3. Driving cycles Characteristics 

 Dist. 

(m) 

Time 

(S) 

Avg. 

Speed 

mph 

Max 

speed 

mph 

Avg. 

Acce. 

(ft2/s) 

Avg 

Decel

. 

(ft2/s) 

N 

Stops 

UDDS 7.45 1369 19.58 56.7 1.66 -1.9 17 

NEDC 6.79 1184 20.64 74.76 1.78 -2.59 13 

HWFET 10.26 765 48.2 59.9 0.64 -0.72 1 

WLTP 

Class3 

14.45 1800 28.89 81.59

9 

1.38 -1.44 8 

4.2. Optimization results    

 The proposed algorithm is implemented and 

executed in Matlab. The results of the fitness 

function for each driving cycle and multiple driving 

cycles are given in Fig. 6. Table 4 summarizes the 

optimal variables of inputs, output and weights for 

the five tuned fuzzy EMSs obtained after 

optimization. The Fig. 7-8 respectively show the 

tuned inputs, the control surfaces of the five 

obtained models. 
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Table 4. The optimized parameters: Inputs, output, and 

weights of FUZ.TUN (.) 

 

 

Fig. 6. Optimization process of the fitness function 

 

 

Fig. 7. Fuzzy Inputs tuned under different driving cycles 

Variable 

 

FUZ.TUN 

(UDDS) 

FUZ.TUN 

(NEDC) 

FUZ.TUN 

(HWFET) 

FUZ.TUN 

(WLTP) 

FUZ.TUN 

(MULTI) 

Input 1 

SOC 

0.56 0.50 0.58 0.54 0.59 

0.61 0.62 0.63 0.66 0.61 

0.78 0.74 0.75 0.82 0.72 

0.89 0.88 0.87 0.87 0.89 

Input 2 

reqP  

3657.45 4069.54 3408.00 4188.00 3934.66 

5850.55 6072.24 5345.90 6027.75 4189.00 

10055.48 10248.32 8718.19 8338.00 8338.00 

18018.51 17496.51 18698.27 19976.95 19707.00 

23499.64 24297.55 24242.60 22748.63 25708.21 

27907.79 29496.88 29548.62 28265.87 25926.48 

32161.00 30566.04 31278.67 31088.18 31801.11 

32421.02 34460.53 34752.68 34947.00 32596.25 

Output 

PFC 

 

0.00 24.64 8.68 1.18 15.39 

923.03 483.37 655.48 440.00 440.00 

18410.89 19012.53 13653.61 18875.61 16749.66 

25297.95 24164.19 24919.65 26004.77 30963.94 

32485.54 32400.00 32400.00 33032.67 38643.52 

Weights 

0.10 0.10 0.13 0.10 0.10 

1.00 0.32 0.42 0.95 0.58 

0.87 0.27 0.37 1.00 0.22 

0.23 0.53 0.24 0.79 0.77 

0.89 0.80 0.37 0.10 0.40 

1.00 1.00 0.62 0.38 0.26 

0.62 0.10 0.98 1.00 0.86 

0.98 0.41 1.00 0.72 1.00 

0.44 1.00 1.00 0.53 0.73 

0.13 0.17 0.58 0.34 0.91 

0.81 0.25 0.34 0.33 0.75 

0.23 0.23 0.60 0.10 0.86 

0.47 0.10 0.63 0.10 1.00 

0.28 0.97 0.59 0.14 0.27 

0.59 1.00 0.88 1.00 0.10 
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Fig. 8. Fuzzy control surfaces tuned under different   

driving cycles 

4.3. Results and discussions  

 The obtained models are tested through the 

advisor software over the same driving cycles with 

the same initial conditions. In comparison, the 

FCHEV with the embedded PTC_ADV EMS based 

on thermostat strategy is also carried out. The Fig. 

9-12 respectively present the power distribution 

over UDDS, NEDC, HWFET and WLTP cycles for 

all models, as shown in this figure, at the beginning, 

the battery completely provides the power to the 

motor because of the slow response of the fuel cell. 

The fuel cell power response time for all the tuned 

fuzzy EMSs (FUZ.TUN) is faster than the 

PTC.ADV. This is due to the fact that the required 

power is not counted in the thermostatic strategy. 

The battery also assists the fuel cell during the high 

power demand at each acceleration. The battery 

absorbs the energy from the fuel cell during the low 

power demand. It also absorbs the negative energy 

from the motor during the braking phases.  

 

 

Fig. 9. Power distributions of all EMS models under 

UDDS:  (a) FUZ.TUN (UDDS)    (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)           (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)                 (f)  PTC_ADV 
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Fig. 10. Power distributions of all EMS models under 

NEDC:  (a) FUZ.TUN (UDDS)    (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)                (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)                 (f) PTC_ADV  

 

 

Fig. 11. Power distributions of all EMS models under 

HWFET: (a) FUZ.TUN (UDDS)  (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)                (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)                  (f)  PTC_ADV  
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 Fig. 12. Power distributions of all EMS models under 

WLTP Class3:                                                                  

(a) FUZ.TUN (UDDS)         (b) FUZ.TUN (NEDC)                     

(c) FUZ.TUN (HWFET)       (d) FUZ.TUN (WLTP)         

(e) FUZ.TUN (MULTI)         (f) PTC_ADV 

 Fig. 13-16 show the battery SOC trajectories of 

the different models under UDDS, NEDC, HWFET 

and WLTP, respectively. It can be seen that all 

SOC curves for all EMSs remain in the allowable 

range through all the cycles. The SOC curves in the 

case of FUZ.TUNED under UDDS, NEDC, 

HWFET and MULTI profiles are relatively close. It 

also can be seen that the SOC under the FUZ.TUN 

(MULTI) slightly diverges from the initial SOC 

through all driving cycles. The SOC is maintained 

by FUZ.TUN (MULTI) over all profiles as well. 

The FUZ.TUN (UDDS) also maintains the SOC 

limits under UDDS, NEDC and WLTP.  

 

Fig. 13. SOC Trajectories of all models under UDDS 

 

Fig. 14. SOC Trajectories of all EMS models under 

NEDC 

 

Fig. 15. SOC Trajectories of all EMS models under 

HWFET 
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Fig. 16. SOC Trajectories of all EMS models under 

WLTP Class3 

 Fig. 17-20 present the required speed curves and 

the actual speed response, they are identical, which 

indicates that the dynamic performance is preserved 

by all models whatever the driving profile. 

 

 

Fig. 17. The required and the actual speed (UDDS):                

(a) FUZ.TUN (UDDS)            (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)         (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)          (f) PTC_ADV 

 

 
 

Fig. 18. The required and the actual speed (NEDC):               

(a) FUZ.TUN (UDDS)            (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)          (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)           (f)  PTC_ADV 
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Fig. 19. The required and the actual speed (HWFET):         

(a) FUZ.TUN (UDDS)          (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)        (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)          (f) PTC_ADV 

 Table 5. summarizes the fuel economy MPG, 

the Standard Deviation of the SOC (SD SOC), the 

 SOC and the overall efficiency of the whole 

system from the different models. The overall 

efficiency is calculated by the following formula 

[20]: 

storedessinFuel

RollingAero
EffOverall

__ −

+
=      (14)                  

where Aero is the loss due to aerodynamic drag on 

the vehicle in Kilo-joules, Rolling is the total 

energy required for the vehicle to overcome the 

rolling resistance, Fuel_in is the total energy 

delivered by the fuel cell over the drive cycle and 

ess_stored is the useful energy leaving the batteries 

over the drive cycle. 

 

 

Fig. 20. The required and the actual speed (WLTP) 

Class3                                                                                           

(a) FUZ.TUN (UDDS)           (b) FUZ.TUN (NEDC)               

(c) FUZ.TUN (HWFET)        (d) FUZ.TUN (WLTP)                          

(e) FUZ.TUN (MULTI)          (f) PTC_ADV         

                                                                          

 To avoid the effect of the initial SOC on the fuel 

economy calculation, advisor provides a tool to 

correct the fuel economy within a tolerance that can 

be specified by the user. Hence the tolerance is 

chosen to be identical to the SOC constraint.  
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Table 5. Fuel economy, SD SOC, |SOC|, and overall 

efficiency results of the different EMSs over different 

driving cycles 

 

EMSs 

 

Parameters 

 

UDDS 

 

NEDC 

 

 

HWFET      

 

 

WLTP 

 

 

FUZ. 

TUN 

(UDDS) 

MPG 3.8707     3.9025     4.7456     3.9214 

SD SOC 0.001 0.002 0.001 0.006 

|SOC| 0.005 0.004 0.001 0.020 

Overall 

Eff. 0.174 0.220 0.328 0.277 

 

FUZ. 

TUN  

(NEDC) 

MPG 3.8451     3.9529     4.6639     3.9364 

SD SOC 0.001 0.003 0.003 0.003 

|SOC| 0.004 0.005 0.008 0.022 

Overall 

Eff. 0.174 0.222 0.322 0.278 

 

FUZ. 

TUN  

(HWFET) 

MPG 3.7559     3.8200     4.8436     3.9004 

SD SOC 0.001 0.002 0.002 0.002 

|SOC| 0.006 0.006 0.005 0.022 

Overall 

Eff. 0.174 0.221 0.331 0.277 

 

FUZ. 

TUN  

(WLTP) 

MPG 3.7252     3.7527     4.6396     3.9836 

SD SOC 0.004 0.004 0.004 0.004 

|SOC| 0.012 0.013 0.016 0.005 

Overall 

Eff. 0.168 0.212 0.317 0.272 

 

FUZ. 

TUN  

(MULTI) 

MPG 3.7958     3.8032     4.7324     3.9436 

SD SOC 0.001 0.001 0.001 0.001 

|SOC| 0.002 0.000 0.000 0.005 

Overall 

Eff. 0.172 0.218 0.328 0.269 

 

PTC. 

ADV 

MPG 3.7006 3.7232 4.7176 3.8225 

SD SOC 0.003 0.003 0.003 0.003 

|SOC| 0.001 0.009 0.019 0.001 

Overall 

Eff. 0.171 0.213 0.340 0.266 

5. CONCLUSION  

 In this work, an EMS based first order Sugeno 

fuzzy for FCHEV was developed, a PSO was used 

for monitoring and optimization of the fuzzy 

parameters under different conditions in order to 

find the best sets that can achieve the best fuel 

economy considering the battery SOC maintenance. 

This study focused on the results issued from 

optimization under a particular condition and the 

results issued from optimization under multiple 

conditions. Results showed that the fuel economy 

improved in comparison with the PTC.ADV under 

all conditions, as well as the overall efficiency in 

most conditions. It also showed that tuning the 

fuzzy EMS under one condition cannot guarantee 

the same performance in terms of battery SOC 

when it is tested under another condition. However, 

if it is tuned under multiple conditions, it can 

achieve a good fuel economy with smooth SOC 

variations and a low SOC which are beneficial to 

extend the battery life. In future work, a multi 

objective particle swarm optimization (MOPSO) 

will be applied to the proposed model with 

consideration of the sources’ sizing. As this 

methodology was successful for the considered 

driving conditions, more driving profiles will be 

involved in the optimization process. Moreover, a 

real implementation to validate the fuzzy EMS 

controller will be performed. 
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