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Abstract 

The main purpose of this study is the comparison of two control strategies of wind turbine 4.8 MW, using 

fuzzy control and proportional integral control, taking into account eight kinds of faults that can occur in a 

wind turbine model. A technique based on fault diagnosis has been used to detect and isolate faults actuators 

and sensors in this system, it's about an observer applied to the benchmark model. The obtained results are 

presented to validate the effectiveness of this diagnostic method and present the results of the proposed 

control strategies.  

 

Keywords: Fault Detection, fault isolation, fault tolerant control, Benchmark model, proportional integral 

control, fuzzy control. 

 

1. INTRODUCTION  

 

The wind energy is strongly involved in electric 

energy production in the industrial world, like all 

industrial systems, the wind turbine can be 

threatened by anomalies which are likely to cause 

damage to its performance or even cause a 

complete shutdown of the facility, the methods of 

faults diagnosis are needed. A fault-tolerant control 

system (FTC) is characterized by its aptitude to 

support or to find degraded performances in 

functioning close to those that it has in normal 

functioning. Any FTC system must be accompanied 

by a fault detection and isolation (FDI) system, to 

design the control laws necessary for such a failure. 

To enable researchers to test fault-tolerant 

diagnostic and control approaches applied to a wind 

system. The Benchmark model has been developed 

in [5, 8, 25, 27]. 

The effectiveness of the proposed active fault 

tolerant control strategy is assessed on data 

sequences acquired from the considered benchmark 

(Odgaard et al. in [22], concerning both the fault 

tolerance tracking capabilities. 

At IFAC (International Federation of Automatic 

Control) World Congress two invited sessions were 

formed with different solutions proposed for the 

FDI part of the mentioned benchmark model. In 

this paper, some of these proposed methods are 

compared both on test sequences defined in the 

benchmark and in addition to some additional test 

sets for testing robust of the proposed schemes to 

operational point of occurrence of the faults. The 

compared solutions can be seen in Laouti et al. 

[19], Ozdemir et al [1] and in Hamed Badihi et al. 

in [12]. Results from the FTC port of the previous 

benchmark can be found in other industrial 

applications, a set value based observer method was 

proposed in [3, 9-10] given a control allocation 

method for FTC of the pitch actuators. A virtual 

sensor and the actuator scheme were applied in 

[29]. Fuzzy logic based methods for FTC for 

operation below rated wind speed were presented in 

[6-7, 16-17, 23]. Many other solutions have also 

been applied to this benchmark model, Ayoub EL 

Bakri et al. in [5], Carl Svärd et al. in [8], Silvio 

Simani and Paolo Castaldi in [25] and Viveiros C. 

et al. in [27] . This approach is very interesting seen 

from an industrial point of view since it does not 

require modification of the existing nominal 

controller. 

This solution is an active FTC approach. The 

second contribution uses a Takagi–Sugeno multi-

model approach to deal with the nonlinear nature of 

the wind turbine faults are dealt with by estimating 

the faults. 

This solution can be considered as an active 

fault-tolerant approach. The last contribution uses 

adaptive control to deal with the faults. This 

solution is placed in the category of active/passive 

combination methods. It can, consequently, be 

dangerous seen from a practical point-of-view since 

this strategy might accommodate faults in a wrong 

way by adaptation, for example, in case of a critical 

fault, which requires a safety stop. These solutions 

will first be shortly introduced before they are 

evaluated and compared on the wind turbine FDI 

and FTC benchmark model [5, 8, 25].  

https://doi.org/10.29354/diag/123220
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The work is organized as follows. Section 

second recalls the wind park simulator. Section 

third we present an FTC architecture that allows 

reconfiguring the control law for the defects of the 

benchmark model based on the fuzzy logic control. 

The achieved results are reported in Section last. 

Finally, Section concludes the paper by 

summarising the main achievements of the work 

and providing some suggestions for further research 

topics. 

 

2. WIND TURBINE BASED ON  

BENCHMARK MODEL 

 

The Benchmark model used in our work is 

composed of three blades, variable speeds, 

horizontal axis wind turbine, shown in Figure 1, 

with a full-power converter of 4.8 MW [2, 4, 21]. 

The corresponding block diagram is presented in 

Figure 2, the wind speed, it goes into the blade and 

pitch system. Each of the three-pitch positions (i=1, 

2, 3) is measured with two sensors for physical 

redundancy requirements. They are defined as 

1,1 m , 2,1 m , 1,2 m , 2,2 m , 1,3 m , 2,3 m .  

 

 

Fig. 1. Conversion of the kinetic energy of the wind 

The blades turn the rotor and generate a rotor 

torque r  to the drive train. The drive train converts 

the rotor torque and the generator torque g  to the 

rotor speed rw  and the generator speed gw . They 

are both measured by two sensors as 1,mrw , 2,mrw  

and 1,mgw , 2,mgw . (Shown as mrw ,   and mgw , . In 

Figure 2, the generator and converter use the 

generator reference torque rg ,  to get the generator 

torque g  which is measured as mg , . Combined 

with the generator speed gw , we can get the 

generator power gP . A controller is used to let the 

output power gP  follow the reference power 

denoted rP  [25]. 

 

Fig. 2. Overview of the benchmark model 

2.1. Modeling of the constituent components  

of a wind turbine 

There are several possible configurations of 

wind turbines which can have significant 

differences, depending on their use. However, the 

wind system model in this work consists mainly of 

wind model, aerodynamic model, pitch angle 

system model, the drive train model and the model 

of the generator and the converter. 

2.1.1. Wind model  

The wind turbine is designed to produce 

overpower a range of speed that goes from 5 m/s to 

20 m/s which is shown in Figure 3. The wind model 

used as an input for the turbine in the operating 

speeds is simulated by. 

Fig. 3. Wind variation used in benchmark model 

2.1.2. Aerodynamic model  

The wind turbine captures the kinetic energy 

from the wind and converts it to the torque that 

turns the rotor blades. The total power wP  available 

in the wind likely to be collected by the blades can 

be written in the form:  

32

2

1
wVRPw =                               (1) 

where wV  is the wind speed, 1.225=  is the air 

density, R  is the radius of the blades.  
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The apparent power which is the effective power 

for the turbine is given by:  

),(.
2

1

),(.

32 



Pta

Pwa

CVRP

CPP

=

=

                   (2) 

where  ),( PC  is the power coefficient,   is the 

tip speed ratio,   is the pitch angle. 

The tip speed ratio is given by:  

t

r

v

Rw .
=                                    (3)  

where rw is the angular rotor speed. 

The key function of aerodynamics in the wind 

turbine is to generate the torque g  by using the 

force that comes when the wind interacts with the 

three blades. Rotor torque r  can be expressed as:  

 
=

31

2

6

),(...
i

iPt
r

CV 
                         (4) 

where i  the corresponding blade position (i=1, 2, 

3). 

2.1.3. Pitch angle system model  

The system consists of three identical actuators 

in Figure (1), each actuator has an internal 

controller [5, 11]. From now on, it describes only a 

single actuator. This actuator adjusts the pitch of 

the blades angle by rotating. This hydraulic actuator 

is modeled as rd2  order state-space model such 

that: 
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                 (5) 

With 






−
=

01

4321.123332.13
pbA , 








=

0

1
pbB , 

 01=pbC . 

where i
  is physical pitch angle ((i=1, 2, 3), 

ibw =  is the pitch angular speed, pby  is the 

measured pitch position ri  ,  is the reference 

position to the controller.    

 

2.1.4. Drive train model 

 In this benchmark model, the drive train is 

modeled by a two-mass drive train model. The 

purpose of the drive train is to transfer torque from 

the rotor to the generator. It includes a gearbox that 

increases the rotational speed from the low-speed 

rotor side to the high-speed generator side. The 

state-space model of the drive train is given by [5, 

25, 27]. 












+

















=



















)(

)(

)(

)(

)(

)(

)(

)(

tg

tr

dt

t

tg

tr

dt

t

tg A
tr
























             (6) 

And the output of the state-space model of the 

drive train is given by [5, 25, 27]:  


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
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



=

 )(
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dtdt Cy







                       (7) 

2.1.5. Model of the generator and converter 

 In this section, the converter and generator 

models are presented. The generator converts the 

mechanical energy into electrical energy, while it is 

loaded by a torsion moment issued by the 

converter. It is described as a first-order system. 

gs

gc

Sg

g

Ss

s









+
=

)(

)(

,

                      (8) 

where 50=gc , )(, srg  is the generator torque 

reference. 

The power produced by the generator depends 

on the angular speed of the generator, as described 

in the following equation: 

)()( ttP gggcg =                            (9) 

 where 98.0=gc  is a constant representing the 

generator efficiency. 

2.2. Sensor models 

Some relevant faults are considered in this 

benchmark model. The first is a fault in the pitch 

position measurements. These faults are denoted 

1,1 m , 2,1 m , 1,2 m , 2,2 m , 1,3 m , 2,3 m . Secondly, 

the rotor speed measurement can be faulty. We 

denote the deviations in rotor speed measurement 

caused by these faults as 1,mrw  and 2,mrw . The fault 

signals for the two generator speed measurements 

are denoted a 1,mgw  and 2,mgw . Both the rotor and 

generator speed measurements are done using 

encoders. Encoder faults can be due to both 

electrical and mechanical failures, which result in 

either a fixed value or a changed gain factor on the 

measurements[13, 18] . 

2.2.1. Fault scenarios 

Several faults are considered in the benchmark 

model. Some are sensor faults which could happen 

in pitch position measurements 1,1 m , 2,1 m , 1,2 m , 

2,2 m , 1,3 m , 2,3 m , rotor speed measurements 

1,mrw , 2,mrw  and generator speed measurements 
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1,mgw , 2,mgw . Some are actuator faults which may 

happen in the converter and pitch systems denoted 

as rg , , i  (i=1, 2,3) [18]. The possible failure 

scenarios which may be presented as follows:  

▪ Fault 1: fault type A1, a fixed value on 1,1 m  

equal to 5° in the period from 2000 to 2100 s,  

▪ Fault 2: fault type A2, a gain factor on 2,2 m  

equal to 1.2 in the period from 2300 to 2400 s,  

▪ Fault 3: fault type A1, a fixed value on 1,3 m  

equal to 10° in the period from 2600 to 2700 s,  

▪ Fault 4: fault type A3, a fixed value on 1,mrw  

equal to 1.4 rad/s, in the period from 1500 to 

1600 s,  

▪ Fault 5: fault types A4 and A6, gain factors on 

2,mrw  and 1,mgw , respectively, equal to 1.1 and 

0.9 in the period from 1000 to 1100 s,  

▪ Fault 6: fault type B3, change in the dynamics 

due to the hydraulic pressure drop of the pitch 

actuator 2; the fault is assumed to be abrupt and 

it is present in the period from 2900 to 3000 s,  

▪ Fault 7: Fault type B4, change in the dynamics 

due to increased air content in the oil on pitch 

actuator 3. The fault is slowly introduced during 

30 s with a constant rate; afterward, the fault is 

active during 40 s, and again decreases during 

30 s. The fault begins at 3500 s and ends at 

3600 s,  

▪ Fault 8: fault type B2, an offset on g  of the 

value 100 Nm, the fault is active from 3800 to 

3900 s. 

2.3. Observers based diagnosis of wind turbine 

By definition, an observer is a dynamic system 

taking to input the known signals of the system on 

which it is implanted and whose outputs converge 

towards estimation of the state variables (or of a 

part of the state variables). 

The main idea of the observer-based diagnosis 

is to estimate a part where the set of system 

measurements that are monitored from measurable 

magnitudes. This estimate is compared to the 

measured value of the output to generate residuals. 

These residues should serve as reliable indicators of 

the behavior of our system. They are therefore void 

in the absence of defects and not null in their 

presence [19]. The proposed Unknown Input 

Observer-based Fault Tolerant Control scheme 

consists of a bank of observers, each designed for 

the different fault scenarios: No Faults (Observer 

1), a fault in one rotor speed sensor (Observer 2), a 

fault in one generator speed sensor (Observer 3), 

faults in both rotor speed sensors (Observer 4), 

faults in both generator speed sensors (Observer 5) 

and a fault in one generator speed sensor and one 

rotor speed sensor (Observer 6). These unknown 

input observers are designed using the scheme 

presented in [13, 18, 26]. These 6 designs cover all 

the possible combinations of faults since the 

observer does not matter which of the two 

respective sensors of one speed is faulty since these 

sensors are only modeled by stochastic noise added 

to the actual speed value. It is assumed that the 

model of the wind turbine can be represented by a 

discrete-time state-space model of the form. 

 

         
     nnXCnY

nndEnUBnXAnX

jdj

ddd





+=

+++=+

,

1
      (10)  

where  nX  is the state vector. 

However, the system inputs will be presented in the 

following state vector : 
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Where  nY j  defines a vector of sensor signals, 

corresponding to the thj  observer. They are given 

below and for those coefficients, without a number, 

it indicates that only one of these sensors is healthy. 
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Where ][nd  a vector of unknown inputs is, 

][n  defines the process noise, ][n  defines the 

measurement noise. The discrete-time model 

matrices are given as dA , dB , dE  and idC ,  which 

denotes the dC  matrix for the thj  observer. 

The unknown input observer in the discrete-

time form is given by [13, 15, 20]. In this 

formulation of the observer the subscript index j 

refers to the observer number. 

     

     nYHnZnx

KjYjndUTnZFnZ

jj

jj

=

+−+−=+ 111
     (13) 

All observers are computed at each sample but 

the vectors  nx  and  nZ  are given as  nxi  and 

 nZ i  where  i  corresponds to the observer number 

accommodating the detected and isolated faults at 

sample n . 

2.4. Wind turbine control 

The objective of this part is to explain how the 

variation of wind speed and the pitch angle 

influence the control of power and also to explain 
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the variables that are involved in this control. This 

is very important because the diagnosis and fault-

tolerant control are applied under these conditions, 

indeed the wind turbine works in four zones 

depending on the wind speed, shown in Figure 4. 

 

Fig. 4. Typical wind turbine output power 

The output power curve for the wind turbine 

depends on the wind speed. In zone 1, the wind 

turbine will be idling awaiting higher wind speeds 

(0-5 m/s). In zone 2, the generated power of the 

wind turbine will be optimized (5-12.5 m/s). In 

zone 3, the wind turbine will be controlled to keep a 

constant power generation (12.5-25 m/s). In zone 4, 

the wind turbine will be parked, preventing damage 

due to the high wind speed (above 25 m/s). 

The controller is active in zones II and III. In 

area II the optimal speed of the rotor is obtained by 

using the torque converter as a control signal. Zone 

III corresponds to constant power output. In this 

work, only zones II and III are considered to 

achieve this propose, we compare to control 

approach the PI control and the fuzzy logic control 

[14, 22]. 

2.4.1. PI Controller 

The controller is implemented with a sampling 

frequency of 100 Hz. The control mode should 

switch from 1 to 2 if: 

       nnnPnP nomgrg                       (14) 

where sredwnom /  162= .  

The control mode should switch from 2 to 1 if: 

    −  nn nomg                                      (15) 

The   is a small offset subtracted from the 

nominal generator speed. 

▪ Control mode 1: 

 The converter reference signal in this control 

mode is defined by the 0][ =nr  and the reference 

torque to the converter rg.  as follows: 

2

. .













=

g

g

optrg
N

K


                           (16) 

With:  

3

3
),(

..
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1


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p

opt

C
RK =                           (17) 

 

▪ Control Mode 2: 

 

  The converter reference signal in this control 

mode is given by ][nr  as follows :  

     

 1).(

1

−−

++−=

nekTk

neknn

psi
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                       (18) 

 Where ][][][ nwnwne nomg −=  in this case, the 

converter reference is used to suppress fast 

disturbances given by:  

 
 
 n

nP
n

ggc

g

rg



.

. =                                          (19) 

 

Table I : Wind model parameters used in the 

benchmark model 
  H 

0r  

0.1 81 m 1.5 m 

 

Table II : Blade and pitch model parameters used in 

the benchmark model 

 R     
n  

57.5 m 

3
225.1

m

kg
 

0.6 

s

rad
225.1  

2  2n  3  3n  

0.45 

s

rad
73.5  

0.9 

s

rad
42.3  

 

Table III: Drive train model parameters used in the 

benchmark model 

dtB  rB  
gB  gN  

rad

Nms
49.775  

rad

Nms
11.7  

rad

Nms
6.45  

95  

dtK  
dt  2dt  gJ  

rad

Nms910.7,2  
0.97 0.92 390 kg.m2 

rJ  - - - 

55.106 Kg.m2 - - - 

2.4.2. Fuzzy Logic control 

Today, fuzzy logic came to maturity and used in 

many industrial and managerial applications, its 

implementation is now facility with the availability 

of dedicated microprocessors and powerful tools for 

development [24, 26, 28]. This section deals with 

the decomposition of input-output data )(tu and  

)(ty , acquired from the actual process, into fuzzy 
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subsets, which are approximated by local affine 

input-output models. Fuzzy clustering algorithms 

can be used as a tool to obtain partitioning of data 

into subsets, which can be approximated by local 

affine models. It is assumed that the dynamics of 

the system under observation is described by the 

following Equation Error (EE) [26]. 

)())(()( ttxfty +=                        (20) 

where the vector )(ty  is the system output, )(tx  is 

a collection of a finite number of inputs and 

outputs, the vector 

( ) ( ) ( ) ( ) ( ) ntutuntytytx t −−−−= ,...,1,,....,1 , ( ).f  

describes the input-output link, while )(t  reflects 

the fact that )(ty  is not an exact function of )(tx , n 

is an integer related to the system memory or order. 

Generally, the treatment of a problem by fuzzy 

logic is done in three steps. 

The objective of fuzzy clustering algorithms is 

to partition the set of observed inputs and outputs 

)(tx  of an unknown system into a number M  of 

fuzzy subsets. Each subset, ),1( MiRi =  

representing an operating condition of the dynamic 

system, can be approximated by an affine dynamic 

model. Partition of the data set into a fuzzy subset 

can be achieved, for instance, by using the well-

established Gustafson–Kessel (GK) clustering 

algorithm [26]. Each cluster iR  of the data )(txi  

obtained by fuzzy partitioning is regarded as a local 

approximation of the real process. The global EE 

model (1) can be conveniently represented using 

local affine Takagi–Sugeno rules )(tyi  given by:  

)()( txyRtx T

iii =                               (21) 

Where i  is the thi −  parameter vector of the 

thi −  sub-model, with Mi ,...,1= . The Takagi–

Sugeno fuzzy model is a simple way to describe a 

nonlinear dynamic system using local affine 

models. The global system behavior is thus 

described by a fuzzy fusion of all affine model 

outputs: 





=

==
M

i

i

M

i

ii

tx

tytx

ty

1

1

))((

)())((

)(ˆ





                                (22) 

In which )(ˆ ty  is the estimate of the output )(ty  

at the instant t . The results of the clustering 

algorithms are M  the membership functions i , 

and the subsets of input-output data 
T

itx 1))(( =  with 

it  . 

3. APPLICATIONS RESULTS  

 

The model developed by kk-electronic is 

presented for a turbine 4.8 MW for a given wind 

profile previously, for the investigation and tests of 

the proposed approach, the actual operating data of 

the studied wind turbine was used in the PI 

controller, to present the dynamics of the turbine in 

operational mode. 

We note that between (t = 0 to t = 2300 s), wind 

speed is in zone 2, hence the value of pitch angle 

and the resulting power is optimal. From (t > 2300 

s) the wind speed can reach area (zone 3), one can 

notice that the power, torque, and speed are 

controlled at their nominal values. The pitch angle 

is equal to 0 in this case. 

Eight faults were detected and isolated 

simultaneously in this scenario. Fig. 5 shows the 

electrical power generated in this scenario. We find 

that the production of energy is influenced by the 

command. We observe a fault between the instants 

2600 s and 2700 s. This is due to a fault in the fixed 

value. From the results, we notice that a good 

power tracking of the fuzzy regulator compared to 

the classic PI (the results of which were presented 

to the generator electric power), we obtained an 

improvement in the overall performance of the 

system. 

 
Fig. 5. Variation of the electric power of the examined 

wind turbine 

Fig. 6 shows the torque generated g  in this 

scenario. We find that the production of energy is 

influenced by the command, we observe a fault 

between the instants 3800 s and 3900 s, this is 

caused by the fault 8, shown in the Fig 6.A in the 

fixed value. From this results, we notice a good 

speed tracking, and a good rejection of 

disturbances. 
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Fig. 6.A. Fault 8 signal  

 
Fig. 6. Variation of the generator torque of the examined 

wind turbine 

Fig. 7 shows the sensor measurements on 2,mrw  

and 1,mgw  the result of the fault decision, we notice 

the existence of a defect, of type gain factors, it's 

the fault 5 shown in the Fig.7.A, it appears between 

the instants 1000s and 1100s, where the 

measurement of 1,mgw  which is also influenced by 

disturbances.  From this results, we notice a good 

speed tracking, with an almost zero overshoot of 

the fuzzy governor, and a good rejection of 

disturbances. 

 
Fig. 7.A. Fault 5 signal  

 
Fig. 7. Variation of the generator speed of the examined 

wind turbine 

Fig. 8 shows the sensor measurements on 1,mrw  

the result of the fault decision, we notice the 

existence of a defect, of type gain factors, caused 

by the fault 4 shown in the Fig.8.A, it appears 

between the instants 1500s and 1600s. From this 

results, we notice a good speed tracking, and a good 

rejection of disturbances. 

 
Fig. 8.A. Fault 4 signal  

 
Fig. 8. Variation of the rotor speed of the examined wind 

turbine 
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Fig. 9 and Fig.10 shows the sensor 

measurements 1,1 m  and the fault result. We notice 

the presence of a fixed value defect. This is the 

fault 1 shown in Fig.9.A, it's detected and isolated 

between the instants 2000s and 2100s. From this 

results, we notice that overall investigating the 

factors, the fuzzy control strategy shows better 

performance in comparison with the PI control 

strategy. 

 
Fig. 9.A. Fault 1 signal  

 
Fig.9. Detection and isolation of fault 1 on the sensor 

1,1   using PI controller 

 
Fig.10. Detection and isolation of fault 1 on the sensor 

1,1  using  fuzzy controller 

Fig.11 and Fig.12 show the detection of the 

fault 2, shown in Fig.11.B, is a fault 2,2 m  in the 

scaling error sensor in one of the two-blade position 

sensors 2, and fault 6, shown in Fig.11.A, is a fault 

type B3 in the actuator caused by high air content in 

the oil pitch actuator 2. From this results, we notice 

that overall investigating the factors, the fuzzy 

control strategy shows better performance in 

comparison with the PI control strategy. 

 
Fig.11.A. Fault 6 signal  

 
Fig.11.B. Fault 2 signal  

 
Fig. 11. Detection and isolation of fault 2 on the sensor 

2,2  and fault 6 the controller PI 
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Fig. 12. Detection and isolation of fault 2 on the sensor 

2,2  and fault 6 the fuzzy controller 

Fig.13 and Fig.14 show the detection of fault 3, 

shown in Fig. 13.A, is a fault  1,3 m  in the scaling 

error sensor in one of the two-blade position 

sensors 1, and fault 7 shown in Fig.13.B, is a fault 

type B3 in the actuator caused by high air content in 

the oil pitch actuator 3. From this results, we notice 

that overall investigating the factors, the fuzzy 

control strategy shows better performance in 

comparison with the PI control strategy. 

 
Fig. 13.A. Fault 3 signal  

 
Fig. 13.B. Fault 7 signal  

 

 
Fig. 13. Detection and isolation of fault 3 on the sensor 

1,3  and fault 7 the PI controller 

 
Fig. 14. Detection and isolation of fault 3 on the sensor 

1,3  and fault 7 the fuzzy controller 

From the obtained results, it can be seen that 

before time t = 2100 s (zone 2), faults 1, 4, and 5 

can reduce power and increase torque. However, 

the control has no input on this fault (zone 2). After 

t = 2100 s (zone 3) logical control to destitute the 

effect of faults 2, 3, 6, 7, and 8 for the control of 

power. The same for the torque and speed of the 

generator.  

After the step of generating the residues that are 

presented in the paper, the next task is their 

evaluation for fault detection. For this, the fuzzy 

model has been proposed to determine and to 

localize the type of faults that affect the wind 

turbine system based on the residues generated 

previously. Indeed, the method detected and studied 

system statistical of change characteristics. The 

results presented in this work show the 

effectiveness of the proposed diagnostic system. 
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4. CONCLUSION  

 

In this work, the control of the wind system 

based on the benchmark model is studied, concerns 

the diagnosis, and passive fault-tolerant control for 

different failure, applied to a model of wind 

Benchmark. The bunch of observers for the 

detection and location of defects in wind 

'Benchmark' model was used, the defects which 

have been taken into account are defects of sensor 

and actuator faults. Finally, a passive FTC 

architecture is examined, using the order laws of 

the fuzzy controller and investigate the effect of the 

opposite law order of defects.  
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