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Abstract  

Wind turbines, due to the distribution of the source, are an energy conversion system having 
low density on the territory, whose operational behaviour and production on the short term 
strongly depends on the stochastic nature of wind. They therefore need accurate assessment prior 
installation and careful condition monitoring in the operative phase. In the present work, smart 
post processing of Supervisory Control And Data Acquisition (SCADA) control system data sets 
is employed for fault prevention and diagnosis through the analysis of the temperatures of the 
machines. Automatic routines are developed for monitoring the evolution of all the temperature 
SCADA channels against power production. The methods are tested on an onshore wind farm 
sited in southern Italy, where nine turbines with 2 MW rated power are installed. The tests are 
performed both ex post and in real time: it is shown that in the former case, a major mechanical 
problem is detected, and in the latter case a significant problem to the cooling system is identified 
before compromising turbine functionality. 
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INTRODUCTION  

  
Wind turbines are a technology for converting 

wind kinetic energy into dispatchable electric 
energy. The availability of the source, together with 
environmental or jurisprudential limitations, causes 
wind turbines to have a low density on the territory. 
Further, the stochastic nature of the wind source on 
the short term strongly drives the operational 
behaviour and the quality of the power output. 

For these reasons, wind farms need careful 
assessment on site before installation and 
sophisticated control systems during the operative 
phase. Supervisory Control And Data Acquisition 
(SCADA) control system has therefore become 
widely diffuse in wind turbine technology. It stores 
on 10 minute time basis minimum, maximum, 
average and standard deviation of several 
measurement channels: some of the most relevant 
involve the wind flow (intensity and direction) at 
nacelle, nacelle position, active or reactive power 
and details of the conversion of wind kinetic energy 
into electrical energy, vibrational and mechanical 
aspects, temperatures in proximity of meaningful 
machine components. In order to extract explanatory 
information from the evolution of SCADA 
measurements and to prevent faults, sophisticated 
methods are required to smear out the noise and 
highlight the “treasure” encrypted in the evolution 
of SCADA channels. SCADA data analysis and 
statistical techniques have therefore become a fertile 
subject in the scientific literature.  

In [1] a set of anomaly-detection techniques is 
built and a multi-agent system architecture is used to 
interpret: it is shown that such approach is capable 
of early fault detection. In [2] historical fault data 
are elaborated and classified in category, severity 
and type and are employed for modelling and 
predicting fault incoming one hour before they 
occur. In [3] a solid, although not very recent, 
review is provided on condition monitoring and 
fault diagnosis: attention is devoted to gearbox and 
bearing, rotor and blades, generator and power 
electronics, as well as system-wise turbine 
diagnosis. A survey on model based reasoning 
algorithms for fault detection is also provided.  In 
[4] a more recent review is provided, in which 
methodologies for condition monitoring and fault 
detection are revised. Further, approaches based on 
physics, statistics and data mining for wind speed 
prediction on different time scales are reviewed. In 
[5] robust statistical techniques, as Least Median of 
Squares, are employed for smearing out low quality 
data and feeding reliable models, which are useful 
for fault predictions. Adaptative Neuro-Fuzzy 
Interference Systems (ANFIS) is a fertile technique 
for wind turbine condition monitoring through 
SCADA data mining [6, 7]. In [6] a three step 
strategy is set up: first normal behaviour models are 
used, by training Neural Networks, for detecting 
anomalies on appropriate SCADA data. 
Subsequently, occurred anomalies are related to 
reported faults, and relations are obtained to 
implement a knowledge database used by the Fuzzy 
Interference System to output diagnosis. In the 
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following Paper [8], four data mining approaches 
based on the ANFIS methods are applied and their 
performances are compared. In [9] SCADA 
measurements are filtered for decorrelating them and 
subsequently statistical estimators of outliers related 
to anomalous behaviour are built. It is further shown 
that the approach is capable of catching incipient 
wind turbine blade and drive train faults and tracing 
wind turbine deterioration. In [10] state dynamics is 
analysed for ex post monitoring of wind turbine 
behaviour and for real time operational evaluation, 
through the formulation of two Malfunctioning 
Indices.  

SCADA data mining techniques are not only 
useful for fault detection, but are also crucial for 
optimizing performances in the operative phase, 
quantifying and explaining energy losses, plan 
optimum maintenance. Actually, previous research 
of the authors [11, 12] shows that carefully 
investigating the operative phase and the relation 
between performance degradation and mechanical 
aspects provides useful insight for preventing faults. 
Optimizing performances passes through deep 
knowledge of wake interactions and their effects in 
deteriorating turbine functionality: at this aim, 
SCADA data mining techniques and numerical 
methods are widely exploited. In [13] power losses 
due to wakes are investigated for offshore wind 
farms of Horns Rev and Nysted in Denmark. In [12] 
the issue is addressed for onshore wind farms on 
complex terrains sited in southern Italy and it is 
shown that orography effects force to define 
efficiency of the farm in a novel and more consistent 
way, with respect to the offshore case [14]. In [15] 
post processing techniques are developed for 
quantifying wake power deficit and considerable 
attention is devoted to misalignment and yawing 
under downstream angles. In [16] the test case of 
Horns Rev is addressed and dependency of farm 
efficiency on wind rose, wind speed, turbulence 
intensity and stability of the atmosphere is 
quantified.  

Ongoing research of the authors focuses on 
quantifying power production degradation, due to 
wakes, in relation to mechanical behaviour: 
anomalous nacelle blockage while the wind 
meanders and misalignment between wind direction 
and nacelle position.  The lesson is that careful 
performance monitoring provides insight on turbine 
functionality degradation and stresses suffered from 
the machine, and thus is crucial to prevent faults.  

In the present work, this philosophy is applied to 
the analysis of SCADA data from the temperature 
sensors of an onshore test case wind farm during the 
operative phase. The structure of the Paper is as 
follows: in Paragraph 1 the SCADA database, the 
post processing technique and the methods are 
described. In Paragraph 2 the wind farm, owned by 
Sorgenia Green and sited in southern Italy, is 
described. In Paragraph 3 the results are shown and 
it is demonstrated that the proposed methods for 

monitoring the history of temperature against power 
of single turbines and for comparing “horizontally” 
one turbine against the other, are capable to identify 
performance degradation leading to future faults and 
allow to intervene before traumatic machine stops. 
The methods are applied both ex post, on the 
historical SCADA data set of the wind farm, and in 
real time: in the former case, a major mechanical 
problem is individuated. In the latter case, a 
significant problem at the cooling system is found 
and resolved before leading to turbine degradation 
severe enough to stop and compromise machine 
functionality. Finally some concluding remarks are 
included, which summarize the results and sketch 
further directions of the present work.  

1. The SCADA database and the method for 
temperature analysis 

The data set at disposal is built as follows: the 
SCADA system stores data on 10 minute time basis, 
including minimum, maximum, average and 
standard deviation for each channel. The database 
provides a complete picture of machine 
functionality: it records details of the wind flow at 
nacelle (direction and intensity), of the conversion 
of wind kinetic energy into electric energy (active 
and reactive power and so on), of the mechanical 
status (nacelle position, blade pitch, rotor 
revolutions per minute etc.), of the electric 
behaviour, of the vibrations, of the temperatures in 
meaningful parts of the machine.  

Further a landmark for atmospheric conditions is 
available thanks to a meteorological station, which 
stores in the same time basis as above the details of 
the wind flow (direction and intensity at multiple 
sensors), temperature, pressure, humidity and so on.  

For the present work, data from the state 
dynamics of each machine have heavily been 
exploited for post processing SCADA data sets. 
These demarcate basically in two types: Operating 
States and Status Codes. The former are mutually 
exclusive states, resulting in a series of entries 
providing at which time stamp what each turbine 
starts doing (producing output, awaiting enough 
wind strength, testing, resting for Brake Programs 
and so on). While the Operating States basically 
provide “what” each turbine does, the Status Codes 
provide a sketch of “why”: they are not mutually 
exclusive, and they are classified in order of severity 
(info, warning, error). They are stored with 
associated time stamp and the indication if the state 
is incoming or phasing out.  

The Operating States database has been 
employed for the present work as a read only tool 
for filtering “raw” SCADA measurement, as 
depicted in Figure 1. Since the aim is preventing 
faults and detecting machine degradation before 
traumatic stops, the zoom is focused on the regime 
of power output production. Further, since 
comparison of one machine against the other inside 



Diagnostyka, Vol. 15, No. 2 (2014) 
ASTOLFI, CASTELLANI, TERZI, Fault prevention and diagnosis through scada temperature data analysis …. 

 

73

the wind farm is a precious tool for early fault 
prevention, data have actually been filtered on the 
condition of unison power output production of the 
whole farm. 

The temperature sensors analysed for the present 
work are the following: 
• Converter Inlet 
• Gearbox Inlet 
• Gearbox Bearing (2 sensors) 
• Generator Bearing (2 sensors) 
• Rotor Bearing 
• Oil Sump 
• Stator Wind 
• Top Box 

 

 
Figure 1. The structure of the data set. 

 
The method we propose is a plot of the 
measurements of each temperature sensors against 
the percentage of power with respect to the rated. In 
order to highlight the trends, this is done by 
averaging on intervals with amplitude of 10% of the 
rated power. It has been observed that the results do 
not sensibly depend on the amplitude of the binning 
interval and this threshold has therefore been chosen 
for compromising necessity of capturing the details 
of temperature evolution against machine 
functionality and representativeness, i.e. adequate 
population, of the intervals. 
The plots above are done “horizontally” along the 
wind farm, for each turbine, and using the SCADA 
mean value measurement for each temperature 
sensor: this, as shall be shown later, allows to 
highlight massive deviations of single machines 
from the main trend of the farm. This tool is applied 
ex post on the historical data and in real time on the 
test case wind farm and it is shown that is capable to 
isolate temperature trends, which are evolving into 
traumatic stops of the machine. Therefore the 
method is extremely useful as alarm signal for 
intervention on the machine before incoming of 
serious damage.  

Further, the same plots are performed on variable 
time scale, from monthly to daily, and using the data 
set of minimum and maximum values on 10 minutes 
time basis. This allows to single out potentially 
dangerous spikes and short term anomalies. On the 
other way round, the dominant trend of the each 
turbine is also analysed by smearing out anomalies, 
and plotting the median of temperature values for 
each interval of percentage of rated power. 

2. The wind farm 
 

The present work deals with an onshore wind 
farm, owned by Sorgenia Green and sited in 
southern Italy on a terrain with gentle slopes. On site 
nine turbines are installed with a rated power of 2 
MW each. The main features of the turbines are 
summarised in Table 1. 
 

Table 1: Main turbine characteristics 
 

Nominal Power 2 MW 
Rotor Diameter 82 m 

Hub height 80 m 
Tower Tubular 

 
The layout of the farm deserves attention: as 

shown in Figure 2, the slopes are gentle and the 
dynamics is therefore mainly driven by wake 
interactions. The distance between turbines is such 
as resulting in considerable wake effects: the closest 
turbine are T53 and T55; T58 and T59 can be 
affected by multiple wakes in the east-west 
direction, which is far the most populated of the 
wind rose in the period under examination.  

Wake interactions affect the mechanical 
behaviour of the turbines: due to meandering wind, 
anomalous nacelle blockages and misalignments 
with respect to the wind direction occur. Due to 
other expected phenomena (anomalous rotor 
revolutions etc.), when the wind blows mainly from 
sectors which give rise to wakes, a close watch to 
temperature effects is needed, in order to prevent 
turbine degradation. 

The turbine T42 is isolated from the main cluster 
of turbines, at more than 13 diameters from the other 
aerogenerators. Therefore its SCADA data should 
be treated with care, when comparing it with the 
other machines of the wind farm. 
 

 
Figure 2. The layout of the wind farm 

 

3. The results 
The first application of the proposed method is 

on the historical data of the year 2013. Figure 3 
shows the plot of Rotor Bearing temperature against 
relative power output, averaged as discussed in 
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Paragraph 2, for the test period of two spring months 
during 2013. Figure 3-(a) shows mean, with 
standard deviation, mode and maximum for each 
power bin of turbine T53. Figure 3-(b) is the same 
plot for turbine T60, whose functionality has been 
normal. Comparing the two plots, the massive 
anomaly of turbine T53 is highlighted: it reflects 
also on the other temperature sensors of the drive 
train, omitted for brevity. Figure 3-(c) displays a 
bird’s eye view of the mean Rotor Bearing 
temperature for all the wind farm: it shows that the 
farm behaviour has been homogenous, except for 
the anomalous turbine T53. The turbine has actually 
undergone the substitution of the main shaft 
immediately after the period plotted in Figure 3, due 
to a major mechanical problem.  
 

 
Figure 3: Mean, mode and minimum of Rotor 

Bearing Temperature for turbine T53 (a), T60 (b). 
Mean of Rotor Bearing Temperature for all the 

turbines (c). Sample spring period in 2013. 
 

During the period of Figure 3, alarm status codes 
were activated and therefore our analysis has been 
shifted to the beginning of year 2013, in order to 
inquire if our method is capable of catching 
incoming faults before the control system of the 
machine signals them. The method is thus applied 
on a shorter time scale: weekly. Figure 4 below 
shows the behaviour during the third week of 2013 
and Figure 5 shows the fifth week of 2013, which is 
the first period of alarm activation. From the figures 
it is evident that the anomaly of turbine T53 is 
sharper during week 5, but it is nevertheless very 
clear also during week 3. We therefore infer that our 
method is a useful “wake-up call” for monitoring 
wind turbines and identifying suspect incoming 
faults. 
 

 
Figure 4. Mean Rotor Bearing Temperature for 

weekly test period: week 3 of 2013. 
 

. 
Figure 5. Mean Rotor Bearing Temperature for 

weekly test period: week 5 of 2013. 
 

The test case above allows to inquire if the 
method is capable of encoding also when the turbine 
turns back to its normal thermal behaviour after a 
huge maintenance. This has been analysed through a 
weekly map, which crosses the maintenance period, 
of the main shaft temperatures of turbine T53. 
Figure 6 and 7 below therefore show the weekly 
history of Rotor Bearing Temperature from the 2nd 
to the 17th week of 2013 for turbine T53, and it 
appears that during week 17, which is posterior to 
the maintenance, the temperature goes back to the 
expected behaviour, which is analogous to the one 
of Figure 3-(c), which is the milestone for normal 
functionality. We therefore argue that our method is 
also useful for monitoring machines after massive 
maintenance. 
 

 
Figure 6. Mean Rotor Bearing Temperature for 

weekly test periods of turbine T53 
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Figure 7. Mean Rotor Bearing Temperature for 

weekly test periods of turbine T53 
 

Figure 8 shows the same analysis of Figure 3, on 
a different monthly test period: a worrying anomaly 
on the temperatures related to the generator is 
highlighted for turbine T59.  
 

 
Figure 8. Mean, mode and minimum of Generator 
Bearing Temperature for turbine T59 (a), T60 (b). 

Mean of Rotor Bearing Temperature for all the 
turbines (c). Sample spring period in 2014. 

 
Therefore the focus is shifted on turbine T59 on 

a shorter time scale: Figure 9 shows the same plot as 
Figure 8-(c), but each line represents the data of a 
different week of 2014 (with its numbering) only for 
turbine T59, during the month before the period of 
Figure 8.  
 
 

 
Figure 9. Mean of Generator Bearing Temperature 

for turbine T59. Sample weekly periods immediately 
before Figure 6. 

 

 
Figure 10. Mean Generator Bearing Temperature for 

weekly test period: week 17 of 2014. 
 

From Figure 9 several considerations arise: 
firstly, temperature behaviour mildly varies from 
period to period due to outside temperature 
conditions. Secondly and most importantly, a 
significant anomaly peaks far more sharply with 
respect to normal temperature fluctuations: Figure 9 
actually shows that the anomaly begins in during the 
17th week of 2014. Therefore, in Figure 10 a bird’s 
eye view of the whole farm, during the same week 
17 of Figure 9, is provided and it appears very 
sharply that the Generator Bearing Temperature of 
turbine T59 is massively anomalous. 

Thanks to this analysis, a problem to the 
generator fan of turbine T59 has been individuated 
and solved before producing serious damages to the 
machine. Comparing Figure 8 to Figure 3, it also 
arises that in the case of turbine T53 the 
functionality appears so degraded that not only the 
mean of Rotor Bearing temperature anomalously 
peaks with respect to the rest of the farm, but also 
the standard deviation of the measures inside each 
bin is anomalously large. In the case of turbine T59 
depicted in Figure 6, the standard deviation is of the 
same order of magnitude as the other turbines. This 
is an interesting difference, which might encode 
details of the severity of the temperature anomaly.  
The approach above is useful not only for detecting 
urgent incoming faults, but also for monitoring 
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fluctuations which are suspect of evolving into 
faults on a longer time scale. Figure 11 shows 
indeed another monthly test period in Fall 2013, 
during which turbine T42 shows an anomalous 
fluctuation, not as massive as the cases above but 
significant, of Rotor Bearing and other drive train 
temperatures. 

 
Figure 11. Mean, mode and minimum of Generator 
Bearing Temperature for turbine T42 (a), T60 (b). 

Mean of Rotor Bearing Temperature for all the 
turbines (c). Sample period in Fall 2013. 

 
Yet, crossing against Operating State and Status 

Codes data sets, it arises that turbine T42 has shown 
the best productive time and the best production of 
the farm during the test period plotted in Figure 9. 
Therefore the analysis has been pushed further to a 
comparison between different monthly samples of 
the history of turbine T42. The behaviour is 
anomalously floating in time, more than expected 
due to mere outside temperature seasonality.  

Performances have not been affected by these 
fluctuations for long time. Yet, recently 
temperatures have evolved to a worrying range of 
deviation, which resembles the test cases described 
in Figures 3 and 8, and is currently under analysis 
by the wind farm owner.  

For this reason, the weekly analysis has been 
carried on during the weeks immediately before the 
appearance of warning signals and is plotted in 
Figures 12 and 13. Figure 12 shows the 20th week of 
2014, during which a considerable anomaly for 
Rotor Bearing temperature of turbine T42 appears. 
Not negligible is also the worrying trend of T40. 
Figure 13 shows the analysis of three sample weeks, 
during spring 2014, of Rotor Bearing temperature 
for turbine T42: a considerable increase is 
highlighted, which actually further evolved in 
anomaly so massive to be individuated also by the 
control system of the machine. 
 
 

 
Figure 12. Mean Rotor Bearing Temperature for 

weekly test period: week 20 of 2014. 
 
 

 
Figure 13. Mean of Rotor Bearing Temperature for 
turbine T42. Sample weekly periods during Spring 

2014. 
 

The lesson, from the test cases shown above, of 
turbines T42, T53 and T59 during different periods, 
is therefore that the proposed method allows not 
only to prevent urgent incoming faults and make 
diagnosis before the control system alerts about it, 
but also to monitor long-term trends of 
temperatures, which are suspect to evolve in 
warning and error situations.  

4 Final remarks further directions 

The present Paper has dealt with the analysis of 
temperatures during the operational phase of a test 
wind farm sited in southern Italy (Figure 2). On site 
nine turbines are installed with a rated power of 2 
MW. The method is based on the post processing of 
SCADA data sets, through the read-only 
information contained in the state dynamics. The 
focus is on the operative phase of the wind farm, 
because the aim is furnishing methods for early fault 
detection far before traumatic machine stops. The 
main tool is a plot of average temperature for each 
interval of power output in units of the rated power. 
This is automatically performed for each turbine of 
the farm, allowing “horizontal” comparison between 
the machines, on multiple time scales, and for each 
temperature sensor included in the SCADA system 
(see Paragraph 1 for the list). As shown in 
Paragraph 3, the approach is tested both on 
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historical data of year 2013 and in real time. It is 
demonstrated that the method is capable to highlight 
anomalies evolving into faults: for turbine T53 a 
mechanical problem, which led to the substitution of 
the main shaft, is individuated. For turbine T59, a 
problem to the generator fan is individuated in real 
time, through the analysis on multiple time scales: 
this has led to the substitution of the component 
before major problems occurred. The method has 
not only been used as a sentinel for early detection 
of incoming traumatic situations, but also for long-
term analysis. The test case of turbine T42 has 
actually been investigated: drive train temperatures 
are seen to be significantly floating, yet not enough 
to be qualified as urgent anomalies. It has yet been 
observed that, for turbine T42, the amplitude of 
fluctuations has increased with time and finally 
reached alert level. The lesson is therefore that the 
proposed method is useful both for early fault 
detection and for long term monitoring of turbine 
functionality. Several are the further directions of 
the present work: wake effects commonly affect 
power performance and are associated mechanical 
stress, as anomalously protract nacelle blockage 
while the wind meanders and nacelle misalignment 
with respect to wind direction. It is planned to 
increase the level of post processing complexity, 
zoom into the regimes most suspect of being 
affected by wakes and inquire if peculiar 
temperature effects arise. This is indeed an 
ambitious task, because temperature behaviour of 
the machines is affected by multiple agents and it is 
therefore complicated to single out peculiar thermic 
effects associated to wakes. Yet, wakes can be 
clearly put in relation with mechanical stress, as the 
following Figures 14 and 15 show. In Figure 14 the 
percentage standard deviation of rotor revolutions 
per minute is plotted against the percentage of rated 
power, for all the turbines in the wind farm. 
Measures are averaged on 10 intervals of power 
percentage, as in the Paragraph above. Figure 15 
instead zooms in the regime most expected to result 
in wake effects: data are filtered in 270° sector, 
according to the criterion of nacelle position being 
between 240° and 300°, as measured by turbine 
T55, which is upstream, and therefore taken as 
reference when the wind blows in this direction 
sector. 
 

 
Figure 14. Mean percentage of rotor revolutions per 
minute standard deviation. Sample period in Spring 

2013. 
 

 
Figure 15. Mean percentage of rotor revolutions per 

minute standard deviation: 270° sector. Sample 
period in Spring 2013. 

 
The shapes of the plots of Figures 14 and 15 are 

considerably different: it is evident that the plot of 
Figure 15 is smeared in the regime of low powers, 
which corresponds to low wind intensity, high 
turbulence, maximum influence of wakes. In this 
regime, actually, the turbines affected by wakes 
show a remarkably higher rotor revolutions per 
minute standard deviation with respect to the 
turbines upstream. The plot in Figure 14 shows 
instead that the average mechanical behaviour of the 
farm is homogeneous. Thus, the emergence of 
wakes is clearly identified by a mechanical point of 
view. Since relating wakes directly to temperatures 
is expected to be a complex task, it might be useful 
to use the peculiar wake mechanical effects as a trait 
d’union for the analysis. 

This approach might indeed be very useful for 
planning optimum maintenance programs, in order 
to minimize as possible the stress to the machine. It 
is also planned to apply the methods of the present 
Paper to test case wind farms on very complex 
terrains, with slopes up to 60% in proximity of the 
turbines, in order to investigate if temperature trends 
in the operational phase and fault occurrence 
sensibly depend on terrain complexity. Finally, the 



Diagnostyka, Vol. 15, No. 2 (2014) 
ASTOLFI, CASTELLANI, TERZI, Fault prevention and diagnosis through scada temperature data analysis …. 

 

78

method can be pushed further for investigating if 
temperature trends can be correlated to mechanical 
aspects and if incoming faults can be interpreted in 
terms in such framework, as suggested in [9] and 
modelled in [17].  
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