The peculiarities of fatigue process zone formation of structural materials
Roman Chepil 1  
Volodymyr Vira 2  
Yevhen Kharchenko 2, 3  
Volodymyr Kulyk 2  
Zoia Duriagina 2, 4  
Karpenko Physico-Mechanical Institute of the NAS of Ukraine_1, Naukova Str. 5, 79060 Lviv, Ukraine
Lviv Polytechnic National University_2, S. Bandery Str. 12, 79013 Lviv, Ukraine
University of Warmia and Mazury in Olsztyn, Faculty of Technical Science_3, Oczapowskiego str. 11D, 10-736 Olsztyn, Poland
The John Paul II Katholic Uniwersity of Lublin, Faculty of Physical Chemistry and Physicochemical Fundamentals of Environmental Engineering_4, Racławickie Al. 14, 20-950 Lublin, Poland
Data publikacji online: 04-09-2018
Data publikacji: 04-09-2018
Data nadesłania: 26-05-2018
Data ostatniej rewizji: 31-07-2018
Data akceptacji: 03-09-2018
Diagnostyka 2018;19(4):27–32
It is shown that with a cyclic loading in the vicinity of the stress concentrator within the static and cyclic plastic zones, a specific volume of material is gradually formed – the fatigue process zone. Its size d* determines the length of non-propagated cracks or safety defects in the material and can be a determining factor in the diagnosis of material damage. For these materials, the size d* does not depend a lot on the type and geometric characteristics of the stress concentrator. It can be determined by laboratory conditions. While detecting the defects which are longer than d*, it is decided to reduce the intervals between inspections of the construction element, repair or replace it.
Yevhen Kharchenko   
Lviv Polytechnic National University_2, \nS. Bandery Str. 12, 79013 Lviv, Ukraine, ul. Oczapowskiego 11E, pok. 126, 10-736 Olsztyn, Polska
1. Tsyrul’nyk OT, Nykyforchyn HM, Petryna DY, Hredil’ MI, Dz’oba IM. Hydrogen degradation of steels in gas mains after long periods of operation. Materials Science. 2007; 43(5): 708-717.
2. Krechkovs’ka HV, Mytsyk AB, Student OZ, Nykyforchyn HM. Diagnostic indications of the in-service degradation of the pressure regulator of a gas-transportation system. Materials Science. 2016; 52(2): 233-239.
3. Ostash OP, Andreiko IM, Kulyk VV, Uzlov IH, Babachenko OI. Fatigue durability of steels of railroad wheels. Materials Science. 2007; 43(3): 403-414.
4. Markashova LI, Poznyakov VD, Gaivoronskii AA, Berdnikova EN, Alekseenko TA. Estimation of the strength and crack resistance of the metal of railway wheels after long-term operation. Materials Science. 2012; 47(6): 799-806.
5. Ostash OP, Andreiko IM, Kulyk VV, Vavrukh VI. Influence of braking on the microstructure and mechanical behavior of railroad wheel steels. Materials Science. 2013; 48(5): 569-574.
6. Nesterenko BG, Nesterenko GI. Fatigue and damage tolerance of aging airplane structures. Advanced Materials Research. 2014; 891-892: 1669-1674.
7. Dziendzikowski M, Dragan K, Kurnyta A, Klysz S, Leski A. Health monitoring of the aircraft structure during a full scale fatigue test with use of an active piezoelectric sensor network. Solid State Phenomena. 2015; 220-221: 328-332.
8. Frost NE, Dugdale DS. Fatigue test of notched mild steel plates with measurements of fatigue cracks. Journal of the Mechanics and Physics of Solids. 1957; 5(3): 182-192.
9. Kitagawa H, Takahashi S. Applicability of fracture mechanics to very small cracks or the crack in the early stage. 2-nd Int. Conf. On Mechanical Behaviour of Materials, ICM2, ASM Metal Park, Ohio. 1976: 627-631.
10. El Haddad MH, Topper TH, Smith KN. Prediction of non-propagating cracks. Engineering Fracture Mechanics. 1979; 11(3): 573-584.
11. El Haddad MH, Dowling NF, Topper TH, Smith KN. J-integral applications for short fatigue cracks at notches. International Journal of Fracture. 1980 16(1): 15-30.
12. Abdel-Raouf H., Topper T. H., Plumtree A. A model for the fatigue limit and short crack behaviour related to surface strain redistribution. Fatigue and Fracture of Engineering Materials and Structures 1992, 15(9): 895-909.
13. Irvin GR. Fracture. Handbuch der Physic. 1958, 6: 551-590.
14. Tobler RI, Shu OS. Fatigue crack initiation from notches in austenitic stainless steel. Cryogenic. 1986, 26(7): 396-401.
15. Devaux JC, D'escantha J, Rabbe P, Pellissier-Tanon A. A criterion for analysing fatigue crack initiation geometrical singularities. Trans. 5th Int. Conf. Struct. Mech. React. Technol., Berlin, 1979. G8 (1): 1-8.
16. Ostash OP, Panasyuk VV, Kostyk EM. A phenomenological model of fatigue macrocrack initiation near stress concentrators. Fatigue and Fracture of Engineering Materials and Structures. 1999, 22(2): 161-172.
17. Ostash OP, Panasyuk VV. Fatigue process zone at notches. International Journal of Fatigue. 2001, 23(7): 627-636.
18. Ostash OP, Muravs’kyi LI, Voronyak TI, Kmet’ AB, Andreiko IM, Vira VV. Determination of the size of the fatigue prefracture zone by the method of phase-shifting interferometry. Materials Science. 2011; 46(6): 781-788.
19. Ostash OP, Chepil RV, Andreiko IM, Vira VV, Prokopets VI. Patent of Ukraine № 69067. Method of determining the size of the fatigue process zone. Published: 25.04.2012, Bulletin 8.